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Abstract

In the canonical common value English auction with asymmetric information, the identity of the
insider is assumed to be mandatory known by the public and thus her existence often induces
more aggressive competition. However, when the identity revelation is not enforceable, the
insider can choose whether to reveal or not based on strategic interactions with her rivals. This
could have no trivial impact on bidding outcomes: empirical evidence from Chinese Judicial
Auction for real estate shows that the winning price declines when the insider voluntarily reveal
her identity. To reconcile the conflicts between the data and theory, we introduce the information
revelation decision process into the standard theoretical framework. Our model shows that
the insider may reveal her identity when she receives a bad or very good signal. Also, the
impact from the informed bidder decreases as the number of participants increases and the
effect depends on the level of information frictions. Based on the theoretical framework, we
overcome the identification challenge and construct parametric structure estimation algorithm
to recover the value function distribution. Our estimation results find that first, common value
part dominates the bidder’s private value part of the selling house. Second, the noisy component
is nontrivial. These two features give the informed bidder’s opportunity to take advantage of
strategic bidding. Informed bidder can leverage her information advantage to influence the
bidding activities. For example, adopting both active and inactive bidding strategies, the insider
can shift the winning price distribution leftward by dampening the bidding competition.
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1 Introduction

In an common value open ascending auction, bidders can learn rival’s signals through their bidding
activities, making themselves better by aggregating the information and avoiding winner’s curse.
But when a bidder has information advantage (insider or informed bidder)1, she could influence
bidding activities through strategic interaction. Often, an informed bidder has to pay more if she
participates and wants to win the auction (Hernando-Veciana, 2009; Dionne et al., 2009). But the
previous studies, both in theory and empirical, hold a key implicit assumption that the identity of the
informed bidder is known to the public. Things could change if the informed bidder can free to
decide whether to reveal her identity or not.

Nowadays, with the advancement IT technology, more and more auctions are holding through the
internet under the open ascending format. One typical feature of these auction activities are such that
bidders are anonymous and their identity is not revealed to the public. For example, to prevent the
corruption and promote justice and transparent, more and more high valued and public asset disposal
activities are processed through the online auction in China, e.g., Judicial auction, Land auction, etc.
Since different agents have different levels of information towards the selling item, insiders in these
auction can leverage her information advantage, especially the value of the identity, to influence the
bidding activities. On the one hand, the informed bidder can hide her identity if hiding brings her
higher expected revenue. On the other hand, the informed bidder may voluntarily reveal her identity
to discourage the bidding competition or suppress information revelation process.

How does such behavior affect bidding outcomes still remains an open question. For example, using
the data of Chinese Judaical auction, we plot distribution of weighted winning price for the auctions
with and without identified informed bidder’s participation in Figure 1, which illustrates the main
data fact of this research:

Fact 1. The existence of an insider (informed bidder) reduces the winning outcomes under open

ascending auction.

This data fact posts new challenge for classic auction theory, which shows that in open ascending
auction, the insider induces more aggressive bidding activities. Understanding interactions between
insiders and outsiders during the auction and, more importantly, revenue distribution between the
auctioneers and bidders are crucial not only for economists, but also for organizers or institutions that
aim to use auction for processing high valued assets. However, without carefully consideration of the

1Hereafter, we will use insider or informed bidder interchangeably. Moreover, for the convenience of referring, we
assume insiders as she/her while normal bidders as he/his.
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Figure 1: Statistics of the auctions for the insiders
This figure shows the weighted empirical density distribution of the winning premium under two
different cases. Auctions with an insider on average has lower weighted winning premium.

information revelation process as well as the interactions between informed and uninformed bidders,
the analysis could be biased as shown in Figure 1. In this research, we aim to reconcile the gap
between the theory and data, and investigate the mechanism and decision rules behind the behavior
of different groups of bidders. Moreover, by constructing a structure empirical auction model, we
can further exercise different kinds of policy experiments that provides the policy suggestions for
auction design and welfare improvement.

Specifically, we build a two-step Bayesian Nash equilibrium model with identity revelation decisions
for informed bidder. In the first step, the informed bidder (if exists) makes the identity revelation
decision. In the second step, all the bidders start the bidding competition under open ascending
format and win the item until no new bid submits. The identity revelation rule for the informed bidder
relies on whether revelation can dampen the competition and alter the information updating process
to benefit herself or not. Mathematically speaking, identity revelation rule results in two cutoff points
for the informed bidder’s signal: conditional on the common value component, informed bidder will
reveal her identity to the public if her signal either low or very high. Between the two cutoff points,
the informed bidder will hide her identity for participation.
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We further combine the model with detailed Chinese Judicial Auction housing data collected from
major cities in China. One key features in the data is the existence of “priority bidder”, which is
defined as the person who has some inside information to the selling item, i.e., the insider. Examples
are like the tenants of the house for sale or creditor of the asset. More importantly, the priority
bidder can choose to self-identify themselves or not. With the help of the auction data, we can
study the bidder’s bidding behavior under different information structure. Moreover, we are able to
answer how bidders leverage their asymmetric information for bidding strategies and shed light on
the information premium allocation among bidders.

Empirically, studying these questions need to back out the bidder’s value distribution first. In an
ideal situation of an auction model, we bridge the bidding distribution with the value distribution
under one to one mapping (Milgrom and Weber, 1982). But as emphasized in Bikhchandani et al.
(2002), the equilibrium bidding strategy in the English auction involves the multiple equilibria prob-
lem. This is because bidding prices only indicate the lower bounds of a bidder’s evaluation
on the selling item. One typical bidding price could result from different bidding strategies, re-
flecting a wide range of possible private signals. Moreover, Haile and Tamer (2003) point out that
in English auction, prices may rise in jumps of varying sizes, and active bidding by the rivals may
discourage bidders to bid close to their evaluation. Hence, it is difficult to observe every bidder’s
highest dropout prices or expected valuation. To overcome the model incompleteness, we construct
a structure econometric framework based on maximum simulated likelihood method to estimate
parameters. After backing out the estimate, we can further explore how the information premium
is distributed among different types of bidders. Additionally, we can conduct related policy experi-
ments to evaluate how bidders utilize their asymmetric information to shape their bidding strategies..

This work departs from the previous analysis in many ways. First, to overcome the multiple equilib-
ria and incompleteness of the model, this paper extends Haile and Tamer (2003) approach to estimate
the value distribution in common value English auction. Rather than selecting a unique equilibrium
bidding strategy, we use the bidding history to construct lower and upper bounds on the bidders’
private signals to encompass all the potential bidding strategies. Moreover, since the the second
highest bidder’s last posting price equals to the dropout price by model implication, we leverage
the observation of winning bids to narrow down the structure parameter sets. As the bidding ladder
(the minimal bidding increment required by the auctioneer) is close to zero, the estimated results
converge to point estimation.

Second, our theoretical model provides rational explanation for the data facts that can not be ex-
plained by the previous canonical theory. Based on the model, we are able to construct the structure
estimation framework and design the identification strategy for parameters of interest. In our model,
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the value of the selling item consist of common value part which is identical for all the bidders
and private value part which is bidder specific. Unlike the informed bidder, the uninformed bidder
receives a noisy signal of the item value instead of the precise value of the time. To separate each
one of them, we utilize the second highest bidder’s bidding price and bidding distance among bid-
ders to identify the private as well as the noisy component. Moreover, the variation for the number
of bidders in different auctions can help us pin down the common value component. And the dif-
ference between auctions with or without informed bidder can further help us pin down the noisy
component.

Third, regarding the interactions among informed and uninformed bidders, the learning process
further implies that the informed bidder can significantly affect the auction outcome by strategically
choosing bidding behavior. For instance, an informed bidder can bid either more or less aggressively
during the auction. When the informed bidder intentionally reduce her bidding activities. The final
winning bid distribution is more right skewed compared with the baseline case. A more interesting
case lies in the active bidding activities. If the informed bidder bids too frequently, other bidders
may not have enough chances to fully reveal their private information. In other word, the last bidding
prices of these bidders are too far away from their true valuation. Hence, the information blocking
effect rather than competition effect dominates the learning process. And the simulation results also
verify the right skewed winning bid distribution. Hence, sometimes knowing more may be not good
for the information disadvantaged agents.

Using the Chinese Judicial Auction data to back out the bidder’s value distribution, I find a nontrivial
noisy component of the bidder’s signal (same level as the bidder’s private value component). Also,
the common value part dominates both the private and noisy part. This indicates a stronger power
for the informed bidder to “manipulate” the auction outcomes since the insider’s information is
more valuable. Consistent with the model prediction, the priority bidder in the data display either
very inactive or very active bidding activities. In the counterfactual analysis, the inactive bidding
strategy from the informed bidders can reduce the auction outcome around 10% compared with the
symmetric case. While the active bidding strategy also reduce auction outcome at the same level.
From the perspective of the auction designers, the auction revenue can be increased if we can either
reduce the noisy information or regulate the insider’s behavior during the Judicial auction process.

Related Literature. This research connects to several strands of literature in theoretical and empirical
auction studies, focusing on information(identity) revelation under common value English auction
format.

First, the bidder’s information premium depends not only on their information advantage but also on
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the auction format. A key factor influencing information disclosure is the reduction of uncertainty
(Benoit and Dubra, 2006). In dynamic auction scenarios, such as English auctions, bidders are re-
quired to repeatedly reveal their valuations, which can turn an insider’s advantage into a disadvantage
(Hernando-Veciana and Tröge). This dynamic encourages greater competition and improved infor-
mation aggregation. Conversely, in static (sealed-bid) auctions, empirical evidence from Hendricks
and Porter (1988) shows that the strong winner’s curse associated with better-informed bidders can
negatively impact drainage lease prices, discouraging uninformed bidders from participating ac-
tively.

Furthermore, information disclosure often introduces challenges related to interdependent value dis-
tribution. Adding a common value component increases the model’s complexity by introducing an
additional signal dimension, complicating the mapping from value distribution to bidding strate-
gies. Goeree and Offerman (2003) systematically analyze how different value sources influence
efficiency and revenue, recommending that reducing uncertainty about the common value compo-
nent can enhance efficiency. Tan argues that while disclosing private signals may erode bidders’
competitive advantages, revealing common-value signals can improve social welfare and benefit
sellers by fostering efficient bidding equilibria. In an experimental study, Grosskopf et al. (2018)
observe behavioral divergences in auctions with partial identity disclosure: informed bidders often
overbid due to overconfidence in their signals, while uninformed bidders strategically underbid to
mitigate risks associated with adverse selection. Bobkova (2024) extends these ideas by emphasizing
the critical importance of identifying which information components matter most. Thus, selecting
an appropriate auction or information revelation mechanism is crucial. However, addressing multi-
dimensional signals presents significant challenges. Fang and Morris (2006) and Jackson (2009)
explore equilibrium-related issues in multi-dimensional settings, shedding light on the complexities
involved in achieving optimal auction design.

Research on information disclosure often focuses on the intensive margin—how precisely bidders
know opponents’ signals. McClellan (2023) and Cao, Ma, and Xiang (2025) shift the focus to
bidder identity in static auctions. Distinctly, this paper connects models to data, explaining bidding
strategies in dynamic auctions under identity revelation. Using a structural econometric model,
we estimate the information premium under varying conditions, facilitating welfare evaluations for
auction design.

Identification is central in empirical auction research (Athey and Haile, 2002; Athey et al., 2011;
Hendricks and Porter, 2007). Haile and Tamer (2003) address model incompleteness in English
auctions, proposing bounds for value distribution in IPV settings. Athey and Haile (2002) guide
auction format selection, while Athey et al. (2011) compare efficiency and revenue in English versus
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sealed-bid timber auctions. Testing the common value empirically remains difficult due to unob-
served heterogeneity. Haile and Kitamura (2019) address this through a test for common values in
first-price auctions. Additionally, Compiani et al. (2020) analyze U.S. offshore oil lease auctions,
revealing that unobserved heterogeneity and identity-driven entry decisions significantly affect the
auction’s competitive structure.

Challenges such as multiple equilibria (Bikhchandani et al., 2002) and partial identification com-
plicate auction analysis. Tang (2011) partially identifies revenue in sealed-bid auctions with affili-
ated signals. Chesher and Rosen (2017) use generalized instrumental variables for sharp identifica-
tion. Komarova (2013) examines valuation distribution identification under varied data conditions.
Aradillas-López et al. (2013) directly identify profits in ascending auctions without relying on val-
uations. Coey et al. (2017) extend bounds to asymmetric valuations and refine them when bidder
identities are observed. With improved data, partial identification relaxes assumptions and enables
robust inferences (Tamer, 2010). Recent advancements by Kline et al. (2021) and Kline and Tamer
(2023) provide new tools for inference in partially identified models with applications in industrial
organization.

This paper’s empirical method builds on Haile and Tamer (2003) and structural models by Hong and
Shum (2003), Aradillas-López et al. (2013), and Coey et al. (2017). To leverage data features, we
employ maximum simulated likelihood estimation for structural estimation.

The rest of the paper is organized as follows. Section 2 introduce the institutional background for the
data and provides the empirical evidence regarding the informational asymmetry problem. Section
3 builds a simple two-stage auction model that characterizes the insider’s information revelation de-
cision as well as the bidding behavior for different types of bidders. Based on the theoretical results,
section 4 discusses identification strategies and construct the structure estimation procedure. Section
5 collects main estimation results and discuss the value of the information in different scenarios. In
section 6, we further conduct a series of policy experiments. Finally, Section 7 concludes.

2 Institutional Background and Data Statistics

2.1 Online Chinese Judicial Auction

The primary objective of the Chinese Judicial Auction is to process confiscated or public assets
or property rights equally, transparently and efficiently. In general, the local courts need to deal
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with 600 billion RMB or more worth of assets and property rights every year. The item for selling
includes furniture, car, house, land, and etc. In this research, our focus is the house auction. Before
the auction begins, the auctioneer (i.e., local court) will publish the announcement 15 to 452 days
earlier and open the registration window for potential bidders. The announcement includes important
information such as market evaluation, reservation price, the minimum bidding increment, location,
the existence of the priority bidder, usage information, photos, documentation, plus the third-party
evaluation report. Anyone who wants to attend can register on the platform with the required margins
during the pre-auction period.3 The margin will be refunded if the bidder fails to win the auction. If
the item fails to be sold out at first time, the item has an extra chance to organize a second-chance
auction again. So each item will have two chances to hold a normal auction. In the first-time auction,
the reservation price should be no less than 80% (70% since 2017) of the evaluation rice of the item.
In the second-chance auction, the reserve price can be no less than 80% (70% since 2017) of the
first-time auction’s reserve price.4 If the item can not be sold successfully after the second-time
auction, the item will turn to other disposal methods.

The online platform provides detailed information for each auction: the description of the item,
the date for the auction, the winner of the auction, the reservation price, the evaluation price, the
location of the item if the item was a real estate, the existence of a priority agent, the local court
who organized the auction, the number of bidders in the auction, the length of bidding period. More
importantly, we can observe the bidding history per auction.5

The auction is organized as an open ascending auction such that each bidder publicly submit bid
against each other. The number of participated bidders is publicly known at the beginning of the
auction. The auction begins at the reservation price of the selling item, i.e., a confiscated house.
During the auction, the bidding ID for anyone who submits the bid successfully at the current bidding
period will be announced to the public. And his/her bid is the current posting biding price, indicating
the temporary highest bidding price. Whoever wants to win the item has to submit a bid no less than
the posting price plus the integral multiple of minimum bidding increment, which can range from
5,000 to 50,000 RMB or more, depending on the house value. The auction ends until no new bid
submitted and the item belongs to the highest posting bidder and the winner finish the final payment.

2check the date
3The required margin should be in the range of 5% to 20% of the item value. Usually, the local court sets the required
margin as 10% of the item value. Since houses in China are high-valued asset, the platform also cooperates with banks
to offer loan service.

4If the the reverse price in the first time, the auction is set to 80% (70%). In the second time, the auctioneer can set the
reserve price no less than 64% (49%) of the item’s evaluation value. In this research, our focus is on the fully active
binding cases which we can relax the reserve price restrictions.

5The supreme court authorizes 7 platforms to do the Judicial auction. One of the platform dominates the market (90%),
and our data come from this particular platform.
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After the auction, the website will publish the winning bidder’s information if the auction is sold
successfully.

In this auction, bidders have heterogeneous evaluation towards the selling house. On the one side,
bidders have their private utility to the location, house design, environment, etc. On the other side,
the house also has the market value and also becomes the major financial asset for households.
Among bidders, there is one typical type of bidder tagged by the platform called “priority bidder”,
who by definition has the correlation with the selling property which is equivalent to the insider or
informed bidder of the auction. For example, the priority bidder could be the tenant or the landlord
of the house for selling, or the shareholders of the company, etc.6 At the very beginning, the bidder’s
identity is anonymous. The priority bidder (insider) can decide to report her identity to the platform,
which will be announced to the public. Or she can choose to hide her identity and participate the
auction as other normal bidders. Being the priority bidder enjoy the privilege to win the item when
there is a tie and can replace the current posting price without adding extra increment bid. Unlike the
previous definition of an insider, The insider here can free to decide whether to reveal her identity or
not, which changes the interaction among different types of bidders in the auction.

In this research, I focus on the first-time housing auction not binding with the reserve price and
the data sample ranges from 2015Q1 to 2019Q3. The data consists of representative cities7 in the
eastern and southern area of China with around 19,000 cleaned successful first-time house auctions.

2.2 Data Statistics

The data sample excludes auctions in which the bidder wins the auction at the reservation price.
From the summary statistics in Table 1, we see that of all 19,295 auction observations, only 208
auctions have identified the priority bidders8, which is only 1% of the total data sample. The number
of bidders in most auctions is less than 10, illustrated in Figure 4. Moreover, we also see that around
10% of total auctions only have two bidders involved. The relative low participation rate implies that
online Judicial Auction is not very public well-known and incurs non-trivial information searching
frictions. The reserve ratio, which is defined by the reservation price over the evaluation price, ranges
from 0.7 to 1, satisfying the reservation price regulation on the first-time auction. The winning

6The details of the regulation on priority bidder can be found on the platform.
7The selected cities include: Beijing, Shanghai, Tianjin, Nanjing, Suzhou, Xuzhou, Wuxi, Ningbo, Hangzhou, Wenzhou,
Xiamen, Fuzhou, Guangzhou, Quanzhou, Shenzhen, Zhongshan, Dongguan covering 7 provinces distributed in the the
eastern and southern area of China.

8Due to the technical issue, some auctions announce the existence of a priority bidder but do not reveal the identity during
the bidding process. There are 232 observations for these auctions.
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premium, defined as winning price
evaluation price , has a mean value equal to 1.061 with a relatively high volatile

standard deviation 0.199. The positive premium indicates that Judaical auction helps to dispose
confiscated assets in a fair market value though with high volatility. Moreover, the winning premium
has a fat tail pattern: some auctions winning price can be more than 80% of the evaluation price. In
the classical English auction, the bidding ladder, i.e., the minimum bidding increment required in the
auction, will affect the efficiency of information revelation. Although the bidding increment is large
in terms of absolute value (more than 10,000 RMB), compared to the total values of the item, the
minimum bidding ladder is on average less than 0.4% of the reserve price (ladder ratio in the table).
This implies that bidding ladder is not a serious issue in the analysis of this auction environment.

Table 1: Summary statistics

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Total Priority bidders 440 - - - - - -
Identified 197 - - - - - -

Winning premium 19,295 1.061 0.199 0.761 0.915 1.016 1.166 1.819
Number of bidders 19,295 6.591 2.908 2 4 6 8 15
Reserve ratio 19,295 0.758 0.093 0.700 0.700 0.704 0.800 1.000
bidding Length 19,295 52.918 33.806 6 29 44 68 219
Ladder ratio 19,295 0.006 0.004 0.001 0.003 0.004 0.007 0.056

Besides the above mentioned statistics, there also exists salient heterogeneity across auctions in
terms of the location, facility, house area, etc. Figure 5 shows how winning premium is distributed
under different properties (housing area, evaluation price per square meters, geographic location)9.
In Figure 5a, we see that the larger the house area is, the more positive skewed the distribution
will be. Also, house area in the third quartile (between 122 m2 ∼ 163 m2) is highly right skewed,
i.e., most often discounted. The price gap between the market price and winning price implies that
participating in the judicial auction, insiders can take advantage of the gap.

When classified by the evaluation price per square meters in Figure 5b, the winning premium for
the houses in the most expensive quartile is the one with the most positive skewed distribution.
Specifically, the higher the price per square meters on the market, the more severe discount during the
auction. On the contrary, houses with cheaper price per square meters have a fat tile that a non-trivial
share of these house have very high winning premium (>1.5). Such difference provides another
piece of evidence showing the information frictions on the Judaical auction activities. Besides,
The heterogeneity among judicial auctions are also reflected in the geographic locations. Figure 5c

9In figure 5, I do not differentiate the auctions with or without priority bidders. Here I want to capture the general data
patterns for Online Judicial Auction.
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displays the skewness of the winning premium varies across different provinces in China, indicating
the necessary to control for the geographic differences when conducting the empirical analysis.
Among these provinces and Municipalities, auctions in Beijing, Tianjin and Guangdong have the
longer tails.

In canonical auction theory, when the identity of an informed bidder (i.e., priority bidder) is known to
the public, it can induce more aggressive bidding activities during the auction (Hernando-Veciana,
2009). But under a small group of number of bidders, the insider may leverage her information
advantages to affect other bidders’ behavior. In the next subsection, we utilize econometric tools to
analyze the impact of the priority bidder on the bidding activities.

2.3 Priority Bidders and Information Asymmetry

In Judicial auction, being a priority bidder, i.e., revealing her insider’s identity to the public, is not
a mandatory requirement. Comparing to a more aggressive competition scenario, saving one extra
bidding increment does not seem to have enough incentive for insiders to voluntarily reveal her
identity. However, in auctions with the priority bidder, we indeed observe that the priority bidder
bids actively and many of them finally win the item. Hence, there must exist alternative incentives
that encourage the insider to reveal their identity. To disentangle the difference between auctions
with and without priority bidder, we first separate out the two groups of auction. From the number
of bidders in Figure ??, we see auctions with priority bidder on average have fewer participants under
open ascending Judicial Auction. Figure 1 shows that the winning premium weighted by bidding
activities for auctions with the priority bidders has lower level value distribution than those without
priority bidder, which provides our main data fact.

To further specify the effect of insider’s participation on the bidding outcomes, we conduct the
following econometric analysis:

yτ,t = δ1τ,t{priority}+ψWτ,t +φZτ,t +µg +λt + ετ,t ,

where the yτ,t indicates the dependent variable: winning premium, defined as wining price over
the evaluation price for the selling item; the indicator 1τ,t{priority} represents whether the current
auction τ has a priority bidder or not;10 Wτ,t includes the bidding activities and number of bidders;
Zτ,t represents the control variables, such as the reserve price, the housing area, etc.; µg and λt

10In the data, some priority bidders’ identity is revealed to the public while in certain auctions, the platform only notified
the existence of an informed bidder but did not announce the bidder’s identity. Hence, we have two sub-groups for the
priority bidder in the econometric analysis.
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indicates the fixed effect for cities and years, respectively; and ετ,t is the error terms assuming
independent of other covariates. The key interest variable here is δ , representing the effect of the
existence of the priority bidder on the winning outcome. Moreover, ψ shows how the bidding
activities affect the final outcomes.

Since the data have both identified insiders and unidentified insiders, we can separate these insiders
into two subgroups and check the impacts on the winning premium. Table 2 lists the regression
results. Column 1 and 2 shows the effect of the priority bidder on the winning premium where
the identity of the insiders is known to the public. While column 3 and 4 shows the results for
those unidentified insiders, i.e., other bidders does not know who is the which bid comes from the
priority bidder. In the theory, researchers predict that the existence of an insider under an open
ascending common value auction should encourage more aggressive bidding activities, which lead
to a higher bidding outcomes. However, the regression indicates the opposite effect: the existence
of an identified priority bidder will cause the reduction winning premium. The coefficients are
both statistically and economically significant. Other covariates, such as number of bidders and
length of bidding activities display positive and significant coefficients. The negative impact from
the identified insider challenge the classical theory prediction. The contrasting regression results
between identified and unidentified priority bidders illustrate the importance of the insider’s identity,
which is abstract away in the previous literature.

Moreover, in the data, we also notice that priority bidders have quite heterogeneous bidding behav-
ior: someone bid very actively and finally win the auction, while others behave very inactively. The
heterogeneous priority bidder’s bidding behavior is one of the distinctive features in the data, imply-
ing the evidence of the strategic behavior among informed bidders. To explain the negative impact
from the identified insider, one possible reason is that the identified priority bidder in these auctions
bid very inactively. These identified insiders have lower individual valuation for the item. Seeing
the early dropout for the priority bidder, other bidders will bid more cautiously. However, data show
that about three quarters of these identified insiders bid very actively, either win the item or be the
second highest bidder of the auction.

Regarding the bidding activity, we classify these identified insider bidders into active and inactive
sub-group. Insiders that rank top two of the auction belong to the active group, while the rest of
bidders are marked as inactive. Hence we get 126 active and 83 inactive insiders, respectively.
Considering the huge sample size difference between auctions with and without priority bidders, I
employ the nearest matching techniques to match the treatment group and control group (auctions
without priority bidders).11 Table 3 displays these findings.

11I employ the nearest matching method where the related metrics include the number of bidders, whether the auction
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Table 2: Impact from identified and unidentified insiders on bidding outcomes (Pooled)

Winning premium

(1) (2) (3) (4)

Has insider −0.021∗∗ −0.033∗∗∗ 0.022∗∗∗ 0.023∗∗∗

(0.009) (0.009) (0.008) (0.008)

# of bidders 0.021∗∗∗ 0.020∗∗∗ 0.021∗∗∗ 0.020∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004)

Bidding length (log) 0.110∗∗∗ 0.116∗∗∗ 0.110∗∗∗ 0.116∗∗∗

(0.002) (0.002) (0.002) (0.002)

Bidding spread (log) −0.007∗∗∗ −0.007∗∗∗ −0.008∗∗∗ −0.008∗∗∗

(0.001) (0.001) (0.001) (0.001)

Reserve ratio 1.143∗∗∗ 1.177∗∗∗ 1.143∗∗∗ 1.176∗∗∗

(0.010) (0.012) (0.010) (0.012)

Jump bid 0.069∗∗∗ 0.074∗∗∗ 0.070∗∗∗ 0.074∗∗∗

(0.002) (0.002) (0.002) (0.002)

Price per m2 (log) −0.082∗∗∗ −0.090∗∗∗ −0.082∗∗∗ −0.090∗∗∗

(0.001) (0.001) (0.001) (0.001)

House area (log) −0.065∗∗∗ −0.068∗∗∗ −0.065∗∗∗ −0.067∗∗∗

(0.001) (0.001) (0.001) (0.001)

Model Identified priority bidders Unidentified priority bidders
Fixed effect No Yes No Yes
Observations 19,052 19,052 19,098 19,098
Observations for insiders 197 197 243 243
R2 0.605 0.637 0.606 0.638
Adjusted R2 0.604 0.637 0.605 0.637
Residual Std. Error 0.125 0.120 0.124 0.119

(df = 19043) (df = 19022) (df = 19089) (df = 19068)
F Statistic 3,640.099∗∗∗ 1,151.813∗∗∗ 3,662.467∗∗∗ 1,158.450∗∗∗

(df = 8; 19043) (df = 29; 19022) (df = 8; 19089) (df = 29; 19068)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Column 1 and 2 list the matched active insider’s regression outcome, column 3 and 4 list the inactive
ones, and column 5 and 6 list the unidentified priority bidder’s results. The odd columns ignore
the fixed effect while the even columns control the cities and year’s fixed effect. The table shows
several distinct features. First, the negatives significance holds for the active group. In column
2, the existence of an active priority bidder (δ ) is significantly negative. Conversely, we do not
find significance from the inactive group (Column 3 and 4). One possible explanation is that an
inactive insider does not have any contribution to the information learning process. When checking
the matched outcomes from the unidentified group, it is consistently positive and significant. This
reinforce the previous conjecture that when the identity of an informed bidder is unknown other
bidders will bid more aggressively. We further conduct a series of robustness check which all support
the main results.

From above reduced form analysis, we see that when an insider reveal her identity to the public,
the final outcomes will be lower than the case without the priority bidder. This consolidate an

important debate about the value of the information, knowing more information may be harmful.

To better understanding the mechanism behind the data evidence, we introduce the Bayesian beliefs
and updating process into the canonical model aiming to reconcile the conflicts between data and
classical auction theory. The details will be discussed in details in the next section.

3 Model

Regarding the conflicts between the theory and data evidence, the paper considers a model of two-
stage common value English auction. In the first stage, the insider will make identity (information)
revelation decision based on her received signal. And in the second stage, all other bidders re-
ceive their signals and based on the first stage information revelation decisions, bidders start bidding
competition. For model traceability and identification feasibility (Athey and Haile, 2002), we as-
sume a parameter settings for our model. In the following subsections, we first defined the model
environment. Then we characterize the the insider’s information revelation decisions and discuss
the strategic bidding behavior between informed and uninformed bidders. Finally, we derive the
equilibrium bidding strategies under the non-compulsory information revelation environment.

has jump bid or not, the reserve ratio, the bidding length, the price per square meters, the housing areas and the cities
and years. Then we get the matched control group for the whole priority bidders, the active subgroup and the inactive
subgroup. For robustness test, I also apply the balance-sample size frontier matching method developed by King, Lucas,
and Nielsen (2017). And the results are even more salient.
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3.1 Environment setup

In this environment, each auction τ is associated with observed characteristics Mτ ∈M, which in-
cludes the reservation price γ , the minimum bidding increment ∆, and other public released informa-
tion. Besides, there are some characteristics Uτ ∈U not known by econometricians. The risk neutral
bidder i values the object at Vi,τ , but only receives a private and noisy signal Xi,τ of the valuation Vi,τ .
Let Vτ = (V1,τ , ...,VNτ ,τ), Xτ = (X1,τ , ...,XNτ ,τ), and X−i,τ = Xτ\Xi,τ . The number of bidders enter-
ing auction τ is denoted by Nτ . In the biding stage, the realizations of Ωτ = (Mτ ,Uτ) are common
knowledge among bidders, as well as the distribution of (Xτ ,Vτ)|Ωτ . And let FXV (Xτ ,Vτ |Nτ ,Ωτ) de-
note the joint distribution of signals and valuations conditional on (Nτ ,Ωτ) (Compiani et al., 2020).
Here we introduce our first primitive assumption.

Assumption 1. (i) ∀ n ∈ supp Nτ |ω and ω ∈ Ωτ , FXV (Xτ ,Vτ |n,ω) has a continuously differentiable

joint density that is affiliated, exchangeable in the indices n = 1, ...,Nτ , and positive in the support

of X and V ; (ii) For each bidder i in auction τ , the joint distribution function E[Viτ |Xiτ ,X−iτ ;Nτ =

n,Ωτ = ω] exists and is strictly increasing in Xiτ .

Similar to Compiani et al. (2020), Assumption 1 helps to propose an analytical and trackable solu-
tion method for the value and signal distribution. Let us ignore the subscript τ first and introduce the
information structure. The value of the object to (uninformed) bidder i12, Vi, is assumed to take a
multiplicative form Vi = Ai ·C, where Ai is a private value for bidders and C is a common value com-
ponent unknown to all bidders in the auction. In this model, C and Ai are assumed to be independent
from each other and follow log normal distribution. For the noisy signal, we have Xi = Ai ·C ·Ei,
where Ei = eσε ξi and ξi is an (unobserved) error term that follows a standard normal distribution
(i.e., ξ ∼ N(0,1)). Within an auction, the difference here is that within an auction C is identical for
all bidders, i.e., the common value component, while Ai and Ei is bidder’s specific. Let c ≡ lnC,
ai ≡ lnAi, and εi = lnEi, we have:

vi = ai + c. (1)

where

c ∼ N(µc,σ
2
c ),

ai ∼ N(0,σ2
a ).

Given such information structure, if we let vi ≡ lnVi and xi ≡ lnXi, conditioning on M, the joint
distribution of (Vi,Xi, i = 1...,N) = exp(vi,xi, i = 1, ..,N) is fully characterized by the parameter set

12In this paper, we use uninformed bidder or outsider and informed bidder or insider, interchangeably.
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θ = {µc,σc,σa,σε}. In this paper, we adopt the convention that lower case letters denote logs and
upper case letters levels hereafter.

The above discussion focuses on the standard outsider’s information structure. If there is an insider
(informed bidder) in the auction, i = I, she is assumed to be free of information friction and able to
separate out aI and c:

xI = vI = c+aI (2)

Compared with symmetric case, the information frictions comes from two sources. First, the extra
noisy intervention block uninformed bidders from learning the true value of the item. Second, the
higher uncertainty or imprecise prediction of market fluctuation for the common value part that dis-
courage bidders for the competition. The two sources characterize both the extensive and intensive
margin of the information frictions for bidders in an open ascending auction. Since most of auctions
in the data have at most one insider and our focus is on the interaction between insider and outsiders,
we have the second assumption about the number of insiders.

Assumption 2. An auction has at most one insider and the insider knows precisely the common

value component.

Without loss of generality, bidders are indexed by i = 1, ...Nτ where the ordering 1, ...,Nτ indicates
the order of latest bidding price of each bidder, so that bidder N’s highest bidding price is the low-
est among all the bidders, and bidder i = 1 wins the auction. In a typical common value English
auction, every new bid will reveal some information to the public and other bidders can update their
evolution based on the new bidding price, i.e., learning process. Here we introduce the assumption
that regulates bidding behavior à la Haile and Tamer (2003):

Assumption 3. Bidders do not allow an opponent to win at a price that they are willing to bid and

they will never bid higher than E[Viτ |Xiτ ,X−iτ ;Nτ ,Ωτ ]

Due to the bidding mechanism in this model, bidders may leave the auction with the highest bid way
below his/her valuation, as described in Haile and Tamer (2003). To circumvent this incompleteness
issue, we leverage Assumption 3 to recover the lower and upper bounds of the rivals’ signals from
bidding prices to construct the equilibrium bidding strategies.
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3.2 Insider’s information revelation decisions

Under classic theoretical framework for common value open ascending auction, the existence of
a high-valued informed bidder will encourage the bidding activities. This is because the dynamic
bidding process will “force” bidders to reveal their signals through bidding prices, resulting in more
aggressive competition and “insider’s curse”. However, besides the provision of more precise infor-
mation to the public, the private and noisy components of uninformed bidders amplify the winner’s
curse, which gives the informed bidder’s advantage to manipulate the market by leveraging the iden-
tity revelation decisions. Hence, depending which effect dominates, the informed bidder may or
may not reveal her identity.

Since the insider carries more precise information about the common value part, uninformed bidders
will put more weights on the informed bidder’s inferred signals xI(pI) while reducing the weights
from other rivals. It is important to regulate outsiders’ prior believes about the insider’s arrival
probability. Without loss of generality, if the arrival probability of an informed bidder is small
enough, uninformed bidder can ignore it existence unless shown up when formulating their bidding
strategies, which gives the following high-order assumption:

Assumption 4. Uninformed bidders have a prior belief q towards the existence of an insider in the

auction. Since q is small q → 0, when formulating the bidding strategy, unless the insider shows up,

uninformed bidders ignore the participation of the insider.

This assumption greatly helps us reduce the complexity when comparing the uninformed bidder’s
expected valuation under symmetric and asymmetric cases without scarifying key features of the
model. From the property of the normal distribution and conditional expectation, the constant term
for the asymmetric environment is lower than the symmetric one.13 Together with the coefficient of
xI in different scenarios, we get the crossing point, shown in Figure 2. From Figure 2, we see that,
given the common value realization c, if the informed bidder’s signal is less than the cross point
(xI < xcut), she has the incentive to reveal identity. The results are summarized in lemma 1.

Lemma 1. Under the positive mean value of the value distribution, µ > 0, according to the updating

rules of uninformed bidders, there exists a cutoff point xcut for the informed bidder, such that below

the cutoff point, the informed bidder will reveal her identity to the market. Also the cutoff point is

increasing with common value c. Defining the function c = g(xcut), we have

c = g(xcut) = γ0 + γ1xcut (3)

13This holds when the mean value is positive of the value distribution µ > 0.
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Sym : A1 +β1~x

Asym : A2 +β2~x

xcut

reveal hide

Figure 2: Information revelation decision and cutoff point

With γ0 < 0 and γ1 > 1.

The proof and details can be checked in the appendix A2.

Lemma 1 characterizes the situation when the informed bidder’s private value component is small.

As indicated by the coefficient of γ1, when the common value realization is positive c > 0, the
informed bidder will reveal her identity only if 0 < xI < xcut < c, implying aI < 0. However, under
such scenario, the winning chances for the informed bidder is low because of the small private value
component for the item. Here, a natural question rises: does the informed bidder also have an
incentive to disclose her identity upon receiving a very high signal?

The answer is affirmative. This is because the informed bidder can leverage her information advan-
tage to amplify the winner’s curse effect so as to discourage other rivals bidding activities. Specifi-
cally, as bidding price increases, uninformed rivals are worrying that they may over estimate the true
valuation of the selling item due to the noisy component of their signals. For example, when the
uninformed bidder i perceive that the insider’s signal is no less than his:

c+ai + εi = xi ≤ xI = c+aI,

ai + εi ≤ aI.

Unless the uninformed bidder is very confident that he gets a very high private component, i.e.,
εi ≤ 0, it is very risky to continue bidding and win the auction. Such kind of winner’s curse could
push uninformed bidders to drop out early. In other words, they stop bidding when the informed
bidder’s signal exceeds their expected valuation, E[vi|xi]i=2 < xI . Taking the expectation of the
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xcut

reveal

stop
bidding

E[v2|x2]

Figure 3: Information revelation decision and the second cutoff point

highest order statistics of n−1 uninformed bidders, xcut =E[E[vi|xi]1:n−1], this constructs our second
cutoff point for the informed bidder, as shown in Figure 3. The following lemma summarizes the
construction of second cutoff point for insider’s identity revelation decision.

Lemma 2. Under the positive mean value of the value distribution, the participation of a high

valued informed bidder can deceive uninformed rivals to stop bidding early. There exists a second

cutoff point xcut for the informed bidder such that above the cutoff point, the informed bidder will

reveal her identity to the market. The cutoff point is determined by the first order statistics of the

uninformed rivals’ valuation.

xcut = E[E[c+a1:n−1|x1:n−1]]

= c+E[E[a1:n−1|y1:n−1]] (4)

where

y1:n−1 = (a+ ε)y1:n−1

From Lemma 1 and 2, we have the whole picture of the informed bidder’s identity revelation deci-
sion, which is summarized in the following proposition.

Proposition 1. Based on Lemma 1 and 2, assuming the level of informed bidder’s signal is xI , she

will

1. reveal her identity to the public if xI < x1
cut where x1

cut is determined in condition (3);

2. hide her identity if x1
cut < xI < x2

cut where x2
cut is determined in condition (4);

3. reveal her identity to the public if xI > x2
cut .
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Because the informed bidder will truthfully reveal her identity, other uninformed bidders will predict
the potential common value components and update their conditional expected valuation towards the
selling item accordingly. The next subsection discusses the strategic interactions between informed
and uninformed bidders’ bidding behavior in detail.

3.3 Strategic bidding behavior between informed and uninformed bidders

Before the auction begin, depending on the informed bidder’s information revelation decisions, the
uninformed bidders learns the identity information. In the classic button auction, the uninformed
bidders’ bidding strategy follows the condition that bidders’ conditional expected evaluation equals
to their dropout prices. In our model, the equivalent no longer holds. Still, we know that the last
bidding price of a bidder indicates the lower bound of her/his signal (Haile and Tamer, 2003), while
the winning price automatically becomes the upper bound for all bidders but the winner. Hence, we
can construct the system of inequalities for bidders.

To better approximate the real Judaical Auction activities while keep the model tractability. The
auction is organized in the following mechanisms.

1. Whenever a bidder submits the first price, the auction begins denoted the period by t = 1.
When the auction begins, each bidder can decide whether to submit the bid or not at any time.

2. At the beginning of period t,

(a) bidders decide whether to submit new bid or not;

(b) the auctioneer then collects all the submitted bids and post highest bidding price along
with the corresponding bidder14;

(c) The information is revealed and the auction move to the next period t +1;

3. Based on the bidding history and the posting price, all bidders update their beliefs about their
rivals’ signals, make bidding decisions, and submit the new bids again.

4. If there is no more new bid, the posting bidder wins the item and the auction ends (T ).

The bidding functions for bidder i in period t are defined as β t
i (Xi;Ωt), t = 1, . . . ,T 15 , where Xi

denotes bidder i’s private signal and Ωt denotes the public information set (defined as before) at

14If there exists a tie, the auctioneer randomly picks one of them as the posting bidder.
15More rigoursly speaking, β t

i (Xi;Ωt) indicates the bidder i’s highest possible bidding price that
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period t. Specifically, Ωt includes the bidding history up to period t, the common knowledge of
Mτ , the number of bidders Nτ and the identity revelation of the insider. The function β t

i (Xi;Ωt)

also indicate bidder i at which price she should stop bidding given the current information set Ωt .
Within the interval between the posting price Pt−1 and β t

i (Xi;Ωt), bidder i can submit any price
equal to Pt−1 + k∆,k ∈ N+, where ∆ represents the minimum bidding increment. The set of bidding
functions

{
β 1

i (Xi;Ωt), ..,β
T
i (Xi;Ωt)

}
for bidders i = 1, ...,N are common knowledge. Although we

can not observe the dropout prices directly, the bidding history tells us the lower and upper bound
that can help us to define the equilibrium bidding strategies and back out the value distribution (Haile
and Tamer, 2003).

From period 1 to T , we can further slice into n− 1 rounds like Hong and Shum (2003), indexed
k = 0, ...,n−2. In round 0, all N bidders are presumed actively submitting the bidding price, and in
round k, only n− k bidders are virtually active: each round ends when a bidder no longer submits
new bidding price. Then, we denote β k

i (Xi;Ωk) as bidder i’s pivotal bidding function in round k,

which reflects bidder i’s conditional expected valuation towards the selling property. In the follow-
ing subsections, we first examine the scenario in which the informed bidder’s identity is revealed,
followed by an analysis of the scenario where the identity remains concealed.

Equilibrium Bidding functions when the informed bidder reveals her identity In this scenario,
the identity of the insider becomes the common knowledge. In the auction, uninformed bidders will
update their expected valuation from other bidder’s bidding activities. Particularly, they will put
higher weights for the informed rival’s signal implied by bidding price, to help them recover the
value of the selling goods. While the insider knows the value of the selling item precisely, she does
not rely on other rivals’ signals.

For notational convenience, the informed bidder’s bidding function is defined as β k
I (XI,Ωk). In

round k (0 ≤ k ≤ n−2), fixing the realizations of xn, ...,xn−k+1 and assuming informed bidder has
not yet dropped out, we have n− k active bidders that constitute a system of n− k−1 inequations
for uninformed bidders and a constraint for the informed bidders16:

E[VI|Xk
I ≤ XI ≤ X∗

I ] ≥ P, info
E[V1|Xk

I ≤ XI ≤ X∗
I ,Xi|1≤i≤n−k;X j ≤ X j ≤ X j|n−k+1≤ j≤n] ≥ Pk,

...
...

E[Vn−k|Xk
I ≤ X1 ≤ X∗

I ,Xi|1≤i≤n−k;X j ≤ X j ≤ X j|n−k+1≤ j≤n] ≥ Pk,

uninfo

16For the equation E[V1|Xk
1 ≤ X1 ≤ X̂∗

cut , ...,XN−k;XN−k+1, ...,XN ] = P, it degenerates into E[V1|Xk
1 ≤ X1 ≤ X̂∗

cut ]≥ P
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where the informed bidder’s signal is denoted by XI , Xk
I denotes the insider’s the lower bound in

round k, X1,X2, ...,Xn−k indicate remain active bidders’ signals, and price Pk is the bidder n− k’s
last posting price. The upper bound for the insider X∗

I depends on whether XI locates in the first or
second cutoff points, i.e., X∗

I = X̂∗
1,cut when Xk

I ≤ X̂∗
1,cut holds. Otherwise X∗

I is relaxed (X∗
I = ∞).

Without loss of generality, we assume that the informed bidder decides whether to drop out or not
first. If so, the remaining bidders continue to the next round. If not, we know that informed bidder’s
signal is no less than Pk, implying E[VI|Pk = Xk

I ≤ XI ≤ X∗
I ] ≥ Pk. Hence, the lower bound Xk

I is
pinned down by P.

Meanwhile, uninformed bidders also update the insider’s cutoff points as prices increases. Because
the first cutoff point x1,cut depends on the common value components by equation (3), uninformed
bidders will leverage their bidding functions to predict the common value part of the item, i.e.,

ĉk = E[c|xi|1≤i≤n−k,xk
I ≤ xI ≤ x̂1,cut ;x j ≤ x j ≤ x j|n−k+1≤ j≤n],

and plug back into equation (3) to infer the first cutoff point x̂1,cut . The calculation of expected
evaluation of c and corresponding first cutoff point x1,cut can be checked in the appendix. As bidding
prices increase, it is possible that the posting price exceeds the first cutoff point x̂1,cut . Then the
remaining uninformed bidders learn that the informed bidder actually has a very good signal which
locates above the second cutoff point x̂2,cut . They then bid more cautiously and will stop bidding
when the posting price reaches their self expected valuation E[Vi|Xi]. We can get the early stop point
from the crossing point of E[Vi|Xi] and E[Vi|X1, ...,XN ].

The existence of the two cutoff points dampens the bidding activities.17 Heuristically speaking, if

17This is compared with the case when uninformed bidders do not consider the first cutoff point. Recall the uninformed
bidder’s conditional expected valuation given x−i

(1− β̄3)p = β̄
k
0 + β̄1xi + β̄2x−i, i = 2,3, ...,N − k

When there is no cutoff points, uninformed bidders believe the informed bidder’s signal satisfy x > p if she does not
drops out, resulting in

∫
∞

xk
1

xI f (xI)dxI for the expected signal of the uninformed bidder. When considering the cutoff

point, these uninformed bidders’ beliefs towards the informed bidder become
∫ x̂∗cut

xk
1

xI f (xI)dxI , turning the system of

equations into

p−
∫

∞

xk
1

xI f (xI)dxI < p− β̄3

∫ x̂∗cut

xk
1

xI f (xI)dxI = β̄
k
0 + β̄1xi + β̄2x−i, i = 2,3, ...,N − k

From the conditional expectation of the informed bidder, it is not hard to infer that xk
1 ≥ q, implying that∫

∞

xk
1

xI f (xI)dxI >
∫ x̂∗cut

xk
1

xI f (xI)dxI . Through standard algebra operation, higher left hand side value implies higher sig-

nal for the dropout bidder in round k. In other words, bidders with the same signal will drop out early if they perceive
the informed bidders cutoff point. This clearly show that having the cutoff point will discourage the bidding activities
and reduce the perception of other bidders’ signals.
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most bidders drop out early, it would imply that the selling item may not be so worthwhile, which
reduces the bidding outcomes. On the other hand, if many bidders have relatively higher signals,
the common value components would be very high. Naturally the insider should hide her identity
when participating the auction. If revealing, It is likely that the insider also has a very high private
component. Facing the pressure from the “winner’s curse”, other bidders will tend to stop early to
avoid the unnecessarily loss.

Equilibrium bidding strategies when the insider does not reveal her identity In this scenario,
from Assumption 3, uninformed bidders ignore the existence of the informed bidder and follow the
bidding strategies as if under symmetric environment. Then we construct the system of inequations
in round k: 

E[V1|X1;X j ≤ X j ≤ X j|n−k+1≤ j≤n] ≥ Pk
1 ,

...
...

E[Vn−k|Xn−k;X j ≤ X j ≤ X j|n−k+1≤ j≤n] ≥ Pk
n−k.

Here, everyone act as the same type, bidders no longer have to back out the informed bidder’s
signal. They will follow the same algorithm to back out the lower and upper bounds. Then bidders
will formulate their pivotal bidding function and compete against each other. It is possible that an
insider will hide her identity and pretend to be an outsider for the auction. This happens when the
insider’s signal lies between the first and second cutoff point. If there indeed exists an insider, hiding
her identity will be beneficiary otherwise the bidding will be more aggressive. Now, it is time to
derive the equilibrium bidding strategies.

3.4 Equilibrium bidding strategies

After characterizing the system of inequations for symmetric and asymmetric cases, we now define
the equilibrium bidding strategies. As the auction proceeds to round k, we have the past bidding
path {Pt−1, ...P1} along with the corresponding posting prices {Pk

i }n
i=1. Since the bidding history

is common knowledge, bidder i can infer the history dependent lower bounds of private signals
{Xk

1, ...,X
k
N} by inverting the pivotal bidding functions, i.e., Xk

j = (β k
j )

−1(Pk
j ;Ωk), where Pk

j rep-
resents the highest bidding price of bidder j at round k. In what follows, we focus on increasing
bidding strategies (Hong and Shum, 2003; Haile and Tamer, 2003). Notice that bidders have been
sorted by their posting prices such that i = 1 indicates the winner. At the beginning of the round
k, the lower bounds of the bidders’ private signals can be constructed by system equations of N
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conditional expectations:

E[V1|Xk
1,X

k
2...,X

k
N ;Ωt ] = Pk

1 ,

E[V2|Xk
1,X

k
2...,X

k
N ;Ωt ] = Pk

2 , (5)
...
...

E[VN |Xk
1,X

k
2...,X

k
N ;Ωt ] = Pk

N ,

where Xk
1, Xk

2, ...,X
k
N are the random variables representing the lower bounds of signals. and Pk

i , i =

1, ...,n represents the highest bidding price for bidder i up to the beginning of round k. If bidder i has
not submitted the bid, his highest posting price is set to reserve price Pk

i = γ . The system of equations
in (5) is justified and we can get the unique solutions for Xk

1, Xk
2...,X

k
N , which is summarized in the

following lemma.

Lemma 3. The solution of the n unknown variables in equations. (5) are unique and strictly in-

creasing in Pk = {Pk
1 , ...,P

k
n} , for all possible realizations of the history dependent lower bounds of

Xk
1, Xk

2, ...,X
k
N .

Lemma 3 relates the existence of a monotonic equilibrium to the nonlinear system of equations (5).
With the help of Lemma 3, we can back out the history dependent lower bounds, {Xk

1, Xk
2, ...,X

k
N}, of

private signals for each bidder. Regarding the upper bounds, we introduce a high level assumption:

Assumption 5. when making decisions, bidder expects all her rivals will dropout and she will win

in the next period.

Whenever submitting a new bid, bidders will reveal part of their private signals to the public. A
rational bidder will choose to keep the information revelation frequency as low as possible. Thus, a
typical bidder chooses to bid only when she must bid, i.e., a situation that she expects all her rivals
will dropout. Otherwise, the winner would be the current posting bidder. We apply this assumption
to construct the system of equations to recover the upper bounds for the rivials’ private signals of
bidder i at period t:

E[V1|X
k
1,X

k
2...,X

k
n;Ωt ] = Pk

1 +∆,

E[Vi|X
k
1,X

k
2...,X

k
n;Ωt ] = Pk

i +∆, (6)
...
...

E[VN |X
k
1,X

k
2...,X

k
n;Ωt ] = Pk

n +∆,
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where Xk
1,X

k
2...,X

k
N excluding Xk

i are the unknown upper bounds for bidder i’s rivals, and Pk
i +∆

represents the bidder i’s next period bidding price. Similarly, we get the lemma 4.

Lemma 4. The solution of the n unknown variables in equations (6) are unique and strictly increas-

ing in Pk
i +∆ , for all possible realizations of the upper bounds of Xk

1,X
k
2...,X

k
N .

In the symmetric case, the history dependent upper bounds are equal across bidders, i.e., Xk
i =

Xk
j, i, j ∈ {1,2, ...,N}. The following proposition states that the above three assumptions plus the

two lemmas are sufficient to ensure the existence of equilibrium bidding strategies, where the proof
can be found in the appendix.

Proposition 2. For auction τ with n number of bidders, given Assumption 1, 3, 5 and Lemma 3, 4,

there exists pivotal bidding functions in round k for uninformed bidder under symmetric case,

β
k
i (Xi,Ωk) = E[Vi|Xi,Xk

j ≤ X j ≤ Xk
j, ∀ j 6= i;Ωk], (7)

for bidder i = 1, ...n, where lower bound, Xk
j , upper bound, Xk

j, and public information, Ωt , are

defined above.

When there exists an (revealed) insider, the pivotal bidding function turns into

β̄
k
i (Xi,Ωk) =

E[Vi|Xi,Xk
I ≤ XI ≤ X∗

I ,X
k
j ≤ X j ≤ Xk

j, j 6= i, I;Ωt ] p ≤ X̂∗
1,cut

E[Vi|Xi] p ≥ X̂∗
2,cut

,

where {X̂∗
1,cut , X̂∗

2,cut} are defined above. Depending on the predicted cutoff points, bidders may stop

bidding early intentionally. And the informed bidder follows

β̄
k
I (XI,Ωk) = XI.

Moreover, there exists a Bayesian Nash Equilibrium in strictly increasing bidding strategies whenβ k
i (Xi,Ωk) ≥ Pk

i

β̄ k
i (Xi,Ωk) ≥ Pk

i

, i = 1, ...,n− k or I, (8)

where posting price in round k, Pk
i , and minimal bidding increment, ∆, are defined above.

Unlike the unique bidding strategy in button auction format, Proposition 2 defines an equilibrium
bidding rule that allows bidders to have multiple bidding strategies, as long as these strategies satisfy
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the pivotal bidding functions. This provides a feasible way to deal with model incompleteness issue
in an English auction model.

Because of log-normal assumption, the system of equations (5), (6) and (7) is log-linear in the
signals, allowing us to derive the trackable equilibrium bidding functions for each period. Mathe-
matically speaking, the conditional expectation of Vi take the form:

E[Vi|X1, ...,Xn;θ ,Ωt ] = exp
(
E(vi|x1, ..,xn;θ ,Ωk)+

1
2

Var(vi|x1, ...,xn;θ ,Ωk)

)
, i = 1, ...,n. (9)

Furthermore, we denote the mean and variance–covariance matrix of (vi,x1, ...xn) by µi ≡ (µi,µ
∗)

and Σi ≡

[
σ2

i σ∗′
i

σ∗
i Σ∗

]
. Then, the conditional mean and variance of jointly normal random variables

for the history dependent lower bound private signals are:

E[vi|x ≡ (xk
1, ...,x

k
n)

′;θ ,Ωk] = (µi −µ
∗′

Σ
∗−1

σ
∗
i )+(xk)′Σ∗−1

σ
∗
i , (10)

and
Var(vi|xk;θ ,Ωk) = σ

2
i −σ

∗′
i Σ

∗−1
σ
∗
i . (11)

The linearity of the signals helps us to recover the upper and lower bounds from the system of
equations. Finally, we can recover the pivotal bidding function (7) by plugging the lower bound xk

and upper bound, xk, into the equations:

E[Vi|Xi,Xk
j ≤ X j ≤ X̄k

j , j 6= i;θ ,Ω] =

exp

(
E(vi|xi,xk

j ≤ x j ≤ xk
j,∀ j 6= i;θ ,Ω)+

1
2Var(vi|xi,xk

j ≤ x j ≤ xk
j,∀ j 6= i;θ ,Ω)

)
. (12)

If there exists an insider, we transform the upper and lower bounds into the corresponding cutoff
points as discussed in the previous subsection.E[Vi|Xi,Xk

j ≤ X j ≤ Xk
j, ∀ j 6= i, I;Xk

I ≤ XI ≤ x̂k
1,cut ;Ωk ;θ ]≥ Pk

i lower signal

E[Vi|Xi,Xk
j ≤ X j ≤ Xk

j, ∀ j 6= i, I; x̂k
2,cut ≤ XI;Ωk ;θ ]≥ Pk

i higher signal
(13)

The pivotal function described in equation (12) and (13) can be plugged back into the bidding strate-
gies in the previous subsection. And we finish the construction for the two-stage model with the
identity revelation decision of the insider. Based on pivotal function and the identity revelation
decision rules established so far, we have several implications summarized in the next subsection.
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3.5 Winner’s and loser’s curse

Based on the model setup, we can further discuss the strategic interactions during the bidding ac-
tivities and the value of information. The pivotal function further provides the relation between the
bidder i’s private signal Xi.

Corollary 1. In pivotal bidding functions, the expected value is increasing with respect to X j and X.

And under the same expected value, i.e. E =E[Vi|Xi,X j ≤X j ≤X ,∀ j 6= i,Ωt ;θ ], Xi is non-increasing

with respect to X j and X.

The proof can be checked by directly expanding the expression of the conditional expectation
E[Vi|Xi,X j ≤ X j ≤ X ,∀ j 6= i,Ωt ;θ ]. Before moving on, let me reformulate the pivotal function
(12) into logarithmic form with the notational convenient settings:

E(vi|xi,x−i ≤ x−i ≤ x−i;θ)+
1
2Var(vi|xi,x j ≤ x j ≤ x j,∀ j 6= i;θ)

= A+β1xi +β 2 ·E[x−i ≤ x−i ≤ x−i], (14)

where A summarizes the constant part; β1 is the coefficient in front of xi, while β2 is the coefficient
vectors (1× (N − 1)) in front of the column vector x−i, i.e. Σ

∗−1
−i σ∗

i , and Σ
∗−1
−i is the (N − 1)×N

matrix excluding ith row.

Although asymmetric information will make uninformed bidder in a disadvantage bidding situation,
but sometimes it can also mitigate the winner’s curse. By definition, the winner’s curse refers to the
fact that bidder i realizes that others have lower private signals:

E[Vi|Xi = X∗
i ,X j < X∗

i , j 6= i;θ ,Ω]−E[Vi|Xi = X∗
i ;θ ,Ω].

where X∗
i indicates bidder i’s private signal. The net difference is negative, meaning that winning

brings bad news (Krishna, 2009). Moreover, the larger the xi or N, the worse the curse will be. On
the other side, the common value auction may also induces the loser’s curse: early dropout may
also be bad news (Pesendorfer and Swinkels, 1997). Similar to the winner’s curse, the information
premium for the loser’s curse can be expressed as:

E[Vi|Xi = X∗
i ;θ ,Ω]−E[Vi|Xi = X∗

i ,X
∗
i < X j, j 6= i;θ ,Ω].

As bidder i’s private signal X∗
i increases, the marginal premium is increasing as well. The winner’s

curse and loser’s curse are like the mirror image in which the private signal Xi determines the relative
strength of the two effects. As the lower bound X j increases, the curse will be alleviated, which is
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explained in the appendix. If the lower bounds of other bidders are high, the item tends to have
higher common value, alleviating the curse of winning the item. Information revelation usually
reduces the information premium of the high valued bidder. As the price gradually rises up, a
(uninformed) bidder will realize that someone may have a higher signal and start following the high
valued bidder’s bidding behavior. This will induce more aggressive competition that reduces the
premium of winning the auction.

The above discussion of uninformed bidder’s equilibrium bidding strategies shows that knowing
more information may not be always beneficiary to the information disadvantaged group. The in-
formation revelation and learning process in the Common value open ascending auction gives the
bidder the possibility to manipulate the bidding outcomes through different strategic behavior. So
far, we have characterized the equilibrium bidding behavior for different types of bidders. Based on
our theoretical results, we are able to design the identification strategy and construct the structure
estimation procedure to recover the parameters that we are interested in.

4 Identification and Structural Estimation

There are two primary challenges in backing out the value distribution from the data. The first
is the data unobservability issue. In the Chinese judicial auction mechanism, only one bidder’s
information is displayed per period, leaving it unclear whether other bidders dropped out earlier or if
multiple bids were submitted but only one was shown. This opacity prevents both econometricians
and bidders from observing rivals’ dropout prices, a key distinction in this auction format.

Another issue comes from partial identification induced by model incompleteness and multi-dimensional
information structure (Bikhchandani et al., 2002; Haile and Tamer, 2003; Athey and Haile, 2002).
We have multiple equibilira from value of signals to the bidder’s bidding strategies, complicating
the mapping from model to the data. The two issues make the point estimation infeasible. Instead,
we take advantages of the moment inequality conditions to get interval estimation. In this section,
we first discuss the identification strategy for each of the parameters in θ . Then, we establish the
structure estimation procedure to guide our empirical analysis.
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4.1 Identification strategy

To address the model incompleteness problem, Haile and Tamer (2003) construct the lower and
upper bounds for each bidder’s signals in the auction. Our research takes advantage of this approach
under interdependent information structure. Because the bidders face multi-dimensional signals
(both private and common value and the existence of an informed bidder), we need to find ways to
separate out different component of the signals.

To recover the value distribution, the mean shifter µτ is correlated with a list of proxies that indicates
the demographic or geographic features of the auction and selling item. Hence, we can control µτ(Ω)

using the public information of the auction Ω along with demographic characteristics from the data.
Then we can get the demeaned bidding prices ready to back out the variance of the distribution.

The key parameters of interest include the variance of the private component σ2
a , the common value

part σ2
c , and the noisy part σ2

ε . Since different components affect value distributions in different
directions. we leverage within and across auction variation. Moreover, we can utilize the second
highest bidder’s bidding price to help us narrow down the intervals of parameters (Aradillas-López
et al., 2013). Heuristically, from the coefficient vector of bidder’s expected valuation, we see that a
higher σc shifts the expected evaluation upward, while σa and σε offset against each other. Particu-
larly, a higher σa leads bidders care more about their own signals, making the bidding prices more
sparse. On the contrary, a higher σε force bidders care more about rival’s signals, especially the
insider’s. This lead to the concentration of the bidding prices.18

First, to identify the common value part variation, we know that bidders within the same auction
receive the identical common value shocks. Such variation across auctions, especially for different
number of bidders, can help us identify common value component. Moreover, since all bidders
within an auction receives the same common value component realization, we can utilize the price

18Mathematically speaking,

E(vi|xi,xt
−i ≤ x−i ≤ x−i;θ) = A+β1xi +E[xt

−i ≤ x−i ≤ x−i] ·β 2

where A summarizes the constant part, i.e (µi −µ∗′Σ∗−1σ∗
i ) from (10), β1 is the coefficient in front of xi while β2 is the

coefficient vectors ((N − 1)× 1) in front of x−i, i.e. Σ
∗−1
−i σ∗

i , where Σ
∗−1
−i is the (N − 1)×N matrix excluding ith row.

From matrix algebra, when σε ↑, it will make all bidders’ private signals less precise. Both β1 and β 2 are negatively
affected, resulting in a shrinkage of the signal evaluation, especially for the bidder’s own private signals (β1 drops more
severely). Under this scenario, it cause a more concentrated and lower expected value, which further lead to a more
concentrated and lower posting bidding price.

when σa ↑, it will make the bidder’s own private signal more precise and in the mean while, learning effect from
other rivals becomes less attractive for bidders. This is because private component dominate the value distribution. In
this scenario, β1 will increase significantly while β 2 decreases more than the case of σ2

ε ceteris paribus. In terms of the
auction results, we will find a more spread posting bidding price distribution.
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difference to net out the common value component to check the distribution difference.

Second, separating the noisy part and private value part is a little harder. One way is to utilize the
existence of the informed bidder. In the model, the winning bid variation of the informed bidder
only contains the common value part and private value part. By comparing winning bid variation
between informed and uninformed bidders, we are able to isolate the noisy part. An alternative way
is to compare the range of lower and upper bounds for each bidders. Although the private and noisy
parts have the opposite impact on bidders’ bidding strategies, a higher private value component can
encourage more active bidding activities, while a higher σε could suppress the bidding competition.
Regarding this difference, the distance between the lower and upper bounds for each bidder can
capture this variation. Hence, we are able to recover the value distribution model by comparing with
the (posting) price difference in each auction.

Based on the identification strategy, we derive the following conditions used for the construction
of econometric estimation procedure. Using the pivotal functions, we have constructed following
system of inequalities:

P̊i ≤ β (Xi,ΩT ;θ)< P̊win +∆ ∀i ≥ 2, (15)

P̊win ≤ β (Xi,ΩT ;θ) i = 1,

where P̊i indicates the last (highest) bidding price of bidder i , Ωt indicates information needed up to
period T , θ indicates the set of parameters that we care about, and ∆ represents the bidding ladder.
Particularly, the second highest bidder have the smallest inequality interval, i.e.

0 ≤ β (X2,ΩT ;θ)−β (X2,ΩT ;θ)≤ 2∆

Remember that inequation (15) implies

x j ≤ x j = c+a j + ε j ≤ x j, j = 1,2, .... (16)

Moreover, we get the lower and upper bounds from these posting prices from the system of equations
(5) and (6). Then, we can derive the difference between the posting price to infer the range of signals
between different bidders, expressed as

0 ≤ x2 − x j ≤ x2 − x j = x2(p̊2)− x j(p̊ j), j > 2,
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which can be reformulated into

0 ≤ a2 + ε2 − (a j + ε j)≤ x2(p̊2)− x j(p̊ j), j > 2. (17)

The intuition for the identification is that the set of inequalities illustrate that bidder’s real expected
evaluation should be close to their last posting bidding price, which is also a stronger version of
Assumption 3. Since{c,a j,ε j} follows the normal distribution, we can derive the density function
and apply maximum simulated likelihood to conduct estimation.

Definition 1. Let ΘI be such that

ΘI = {θ ∈ Θ, s.t. inequalities (16), (17) are satisfied at θ ∀X a.s.} .

We say that ΘI is the (sharp) identified set with {σ2
v , σ2

α , σ2
ε }.

4.2 Estimation procedure for maximum simulated likelihood

Based on the identification strategy described in the previous subsection, the estimation procedure
can be separated into two part. In the first part, we back out the mean shifter of the value distribution
from the data. Then, we can use the demeaned bidding prices to back out the set of parameters that
we are interested in, i.e., ΘI .

In the first step, since the means shift is reflected directly from the bidding prices, we control the
mean shifter µτ(Ω) using public information of the auction Ω along with demographic characteris-
tics from the data. Specifically, we construct the following econometric equation

pi,τ,s,t = α +λs +µt +δΩτ,s,t + εi,τ,s,t

where α indicate the common constant term, pi,τ,s,t indicate the last post price of bidder i in auction
τ at city s and year t. λs indicate the city fixed effects, µt the year fixed effect, Ωτ,s,t indicate the
public information and demographic characteristics at the auction level. The resulting residual εi,τ,s,t

represent the demeaned posted prices. The first stage regression helps to back out the demeaned price
distribution. Then we can focus on the structure estimation for the set of parameters ΘI .

To recover the set of parameter, the top priority is to pin down the lower and upper bounds of each
bidder’s signal in auctions. With the help of our parametric model framework, we build the linkage
from model to the data to help us recover the lower and upper bounds. However, the multiple
equilbria for the bidding strategies during the dynamic bidding activities can shuffle the lower and
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upper bounds randomly. Instead of finding the lower (upper) envelope of the lower (upper) bounds,
which can rise serious equilibrium solving problem, we search for the sup and inf for the range of
the bounds per bidder’s signal. Specifically, in each equilibrium bidding scenario, we derive the
lower and upper bounds from the data. Heuristically, a proper set of parameters should generate
the bidder’s real signal within the lower and upper bounds with highest possibility. Based on this
intuition, we construct the likelihood probability function for the inf and sup of the bound range for
estimation. Since recovering the lower and upper bounds needs to integrate the truncated expected
signals for the winner, which requires the simulation method for truncated normal distribution.,
we seek simulated method to reduce the computational burden. Hence, using Maximum simulated
likelihood method. The algorithm is sketched as follows:

1. Given an initial set of parameters {σ s
v , σ s

α , σ s
ε}, we back out the lower and upper bounds from

the bidding history for each bidder in a given auction.

2. Construct the likelihood function and calculate the likelihood function and compare the value
of the likelihood function with the previous results.

3. Search for the parameter space to find the maximum level and the corresponding set of param-
eters.

4. Repeat above steps until reaching the whole potential parameter space.

After this, we construct the likelihood function (part 1) from cumulative distribution function (CDF),
i.e.,

LL1 = ∏
τ

Nτ

∏
i=2

(Fx(xi)−Fx(xi))

where Fx denotes the CDF for x. Recall that for an informed bidder xI = c+aI . Moreover, we denote
g( j)

a+e and G( j)
a+e as the PDF and CDF of range a2 + ε2 − (a j + ε j). From the property of the order

statistics, denote R = a2 + ε2 − (a j + ε j) we have

g( j)
a+e(r) = n!

1
(i−1)!

1
(n−2− i)!

∫
f (z) f (z+ r)[1−F(z+ r)]F(z)i−1[F(z+ r)−F(z)]n−2−idz

If there exists an informed bidder, we make εI = 0 and adjust the g( j)
a+e(r) accordingly. The variation

of R help us to separate out the common value component from the private component, becoming
the second part of the likelihood function

LL2 = ∏
τ

Nτ

∏
j>2

∫ x2(p̊2)−x j(p̊ j)

0
g( j)

a+e(r)dr.
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Combining the two likelihood functions, the objective function can be defined as

Q(θ) = max
θ

{logLL1 + logLL2}

s.t.

{x̄,x} from (6) and (5)

P̊win ≤ β (Xi,ΩT ;θ)

The corresponding sample analog is defined as:

Qn(θ) = max
θ

{logLL1 + logLL2}

s.t.

{x̄,x} from (6) and (5)

P̊win ≤ β (Xi,ΩT ;θ)

where LL1 and LL2 are the simulated likelihood function. Moreover, by shifting the bidder’s belief
towards opponents, we can search for the lowest and highest bounds of the signal. Therefore, the set
of the parameters can be pinned down.

5 Empirical Results

I organize the discussion of the results in two steps, First, we present and discuss the results for
the value distribution using the Chinese Judicial auction data. Next, to get the sense of information
asymmetry for the Judicial auction, we the investigate the information premium using the estimated
parameters for the welfare analysis. Following the (Ciliberto and Tamer, 2009; Chernozhukov et al.,
2007), I report the confidence region of {σc, σa, σε} that is defined as the set that contains the
parameters that cannot be rejected as the truth with at least 95% probability.

The main estimation results of the value distribution are shown in Table 5. I estimate parameters of
the value distribution under different situations: Column 1 lists the results where I exclude all the
priority bidders; Column 2 shows the results for the whole data sample; and Column 3 displays the
subsample since 2017. The range is shown in the second row represented by square brackets. And
the first row indicates the center point of the estimated parameters. From the Table 5, we see the
structure parameters under different sub-samples are consistent. In other worlds, the information
asymmetry problem is universal. Regarding the identification power, the results shows the good
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sensitivity of the private and noisy part for the value distribution. A salient feature of the estimation
is the dominant size of noisy component over bidder’s private and common value part. The large
portion of the noisy part over the bidder’s signal distribution shows the importance of the learn-
ing process among bidders in this typical auction activities. This also justify that the magnificent
influence of the informed bidder to the rest of uninformed bidders’ bidding behavior.

The estimation results indicate a possible way for the informed bidders to affect the bidding out-
comes by strategically manipulating the uninformed bidder’s information structure. From the model,
we know that If common value or noisy component is large, uninformed bidders will put much
higher weight on the bid submitted by the informed bidder. Therefore, the asymmetric information
structure between informed and uninformed bidders gives the informed agent a space for altering
the outcome and exploit information premium. We will see more clearly in the following analysis
for the value of information.

5.1 Information premium under asymmetric information structure

measuring the distribution and the allocation of information is one of the main goals in this research.
In this subsection, we first define the value of information between two types of bidders. Here we
provide three different proxies measuring the information premium from different aspects.

First , let ϖ1
i be the net changes for expected evaluation of uninformed bidders over the existence of

the informed bidder (Dionne et al., 2009):

ϖ
1
i = log(Et [Vi|Xi,X I ≤ XI ≤ X I, X j ≤ X j ≤ X j,∀ j 6= i,I, Ωt ;θ ])

− log(Et [Vi|Xi,X j ≤ X j ≤ X j,∀ j 6= i, Ωt ;θ ]) . (18)

The first part in (18) indicates the (logarithmic) conditional expectation of the uninformed bidder
i with an insider I as one of his rivals. While the second part indicates the same situation without
the informed bidder. The lemma from the appendix, shows how the coefficients varies under the
symmetric and asymmetric environment. i.e., β̄I > βI , β̄1 > β1, and β̄2 > β2.

How ϖ1
i is correlated with the number of bidders? Under the parametric assumption, we find that

the information premium defined in the proposition is decreasing with the number of participants
Nτ . Heuristically, as more and more bidders flood into the auction, single bidder’s influence declines.
Although the presence of an informed bidder can induce more weights shifting towards the informed
rivals, such effect will be offset by the increasing number of participants. Formally, we can have the
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following proposition for the information premium:

Proposition 3. The information premium ϖ1
i defined by (18) is decreasing with the number of par-

ticipants Nτ (Nτ ≥ 3). As Nτ → ∞, ϖ∗ → 0. Moreover, considering the expected valuation, we have

β̄I = 1− [β̄1 + β̄I + β̄ 2 · 1Nτ−2]. Moreover, ∂β2/∂Nτ < 0, ∂ β̄I/∂Nτ < 0, and ∂ β̄2/∂Nτ < 0. In the

limit, we have limNτ→∞ β̄I = 0 and limNτ→∞ β1 +β2 ·1Nτ−1 = 1.

The proof is in the appendix. Notice that the bidder i’s own private effect is independent with the
number of rivals, i.e., σ2

a/(σ
2
a + σ2

ε ). This ratio also indicates the value of the bidder’s private
signals. The learning process helps to reduce the wedge of 1−σ2

a/(σ
2
a +σ2

ε ). As Nτ → ∞, we can
eliminate the side influence from the noisy part. In other word, the maximum effort for the learning
effect coefficients is to fill up σ2

ε /(σ
2
a +σ2

ε ).

This proxy shows the conventional information premium calculation that uninformed bidders do not
consider why the informed bidder is willing to reveal her identity. To include the informed bidder’s
information revelation decision, we further construct the following two proxies.

Second, let ϖ2
i be the net changes for expected evaluation of uninformed bidders over the existence

of the informed bidder. Particularly, the uninformed bidders learn that the informed bidder voluntar-
ily make revelation decisions. Hence, they know the informed bidder’s signal could be either below
the first cutoff point or above the second cutoff point.

ϖ
2
i = log β̄ (Xi,Ωk)− log(Et [Vi|Xi,X j ≤ X j ≤ X j,∀ j 6= i, Ωt ;θ ])

where (19)

β̄ (Xi,Ωk) =

E[Vi|Xi,Xk
I ≤ XI ≤ X∗

I ,X
k
j ≤ X j ≤ Xk

j, j 6= i, I;Ωt ] Xk
I ≤ X̂∗

1,cut

E[Vi|Xi] Xk
I ≥ X̂∗

2,cut

, (20)

Correspondingly, we use ϖ3
i to measure information premium of those tend to hide identity, i.e.,

forcing the hidden informed bidder to reveal her identity.

ϖ
2
i = log β̄ (Xi,Ωk)− log(Et [Vi|Xi,X j ≤ X j ≤ X j,∀ j 6= i, Ωt ;θ ])

where

β̄ (Xi,Ωk) = E[Vi|Xi,max{Xk
I , X̂

∗
1,cut} ≤ XI ≤ min{X∗

I , X̂
∗
2,cut},Xk

j ≤ X j ≤ Xk
j, j 6= i, I;Ωt ]

Compared to ϖ1
i , ϖ2

i and ϖ3
i include the value of identity revelation for informed bidders. Based

on the estimated value distribution, we can conduct the simulation and counterfactual analysis to
understand how the information premium is affected by different factors.
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In the simulated results of ϖ1
i (Figure 7), we see that as the lower bound of the informed bidder

increases, bidder i’s updated expected value is rising quickly. but when the updating process only
comes from the uninformed bidder, the marginal increment of information value is decreasing, which
is consistent with the mathematical expression. This is because bidder i may be worried that the
higher bidding price of the uninformed bidders results from a noisy or private signal rather than a
higher common value component. In addition, Figure 8 shows the fact that the increasing number of
bidders will attenuate the informed bidder’s influence.

—

Using the estimated parameters19, the simulation results are shown in figure 11. As predicted from
the model, the presence of the informed bidder will induce more aggressive bidding, resulting in
a higher winning bid and more frequent bidding submission. These graphs, the winning bid, the
deviation of the bidding price distance, and the biding frequency help to illustrate the influence of
the learning process in an open ascending auction.

In general, if the bidders can learn from each other, given other things equal, higher learning effect
will induce lower distance. However, when an informed bidder enters the auction, two more effects
will be introduced. Because the presence of the informed bidder brings a higher valued signal to
the item, the low valued bidders realize that it is not possible for them to win the item. They will
stop bidding quickly. This is the screening effect. This can be checked by the left fat tail for
the distribution of bidding outcomes with informed bidder. While for those high valued bidders, the
presence of informed bidder will give them more confidence to bid aggressively, resulting in a higher
winning bid. This is the value revelation effect. Therefore, we see a fat tail under the informed bidder
and the left shifted density crest under the informed bidder from the winning price distribution. In
general, the presence of the informed bidder add extra volatility to the bidding activities.

6 Analysis for the Bidders’ Strategic Behavior

After backing out the estimated parameters, I can utilize the counterfactual analysis to investigate
how informational asymmetry affects the bidding behavior and value distribution. Especially, I
examine how the presence of the informed bidder affect bidding behavior of other participants. I also
investigate how the information premium varies with bidders’ bidding activities. Since the informed
bidder’s bidding strategy may affect the auction outcome, the counterfactual analysis helps to study

19In this simulation experiment, I restrict the number of bidders to 5 and separately generate the set of bidding path with
respect to the existence of informed bidder.
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such strategic interactions.

6.1 Simulation environment setup

I generate the simulated auction data under the model assumptions. Regarding the value distribution
parameters, I choose the corresponding parameters from the whole data sample and reach the min-
imal objective function value. The bidding ladder, ∆, is fixed as the 0.5% of the evaluation value.
while the reservation price is normalized to 0.7 of the item’s evaluation value.

In the simulated auction, at the very beginning, each bidder only knows their own private signal xi.
Once someone starts to bid, bidders can obtain more and more price information from the bidding
process. They will combine their own private signals and others’ signals recovered from the bidding
activity to update their conditional expectation. After simulating S auctions, we can calculate the
moment conditions and distributions that we are interested in.

6.2 Comparison to sealed bid auction

Another way to compare the effect of learning process is to analyze how the bidding outcome would
be if the auction is transformed into the sealed bid second price auction. The result is shown in Figure
12. From the graph, we see that by shutting down the learning process, the average winning price
increases in the sealed bid auction. However, in an open ascending auction, the high valued item can
be sold in a even higher price compared due to the learning process. In other words, because of the
information revelation and learning process, an open ascending auction has more volatile bidding
outcomes. Some auctions may end with unexpected low or high winning price. In contrast, in the
ideal sealed bid auction, the distribution of the winning price is close to the evaluation price.

Such comparison illustrate a key feature of the learning process: the amplification effect. In an open
ascending auction, when the private signal can not provide the accurate evaluation of the bidding
item, which is usually the case in an common value environment, bidders rely heavily on their
rivials’ actions. If all the participants bid cautiously at the beginning, the information revealed to
the public implies that this selling item probably not worth so much. After learning this, bidders
will adjust their strategies and bid even less actively, dampen the competition. On the other side, if
some one really like the selling item, the active bidding of this particular bidder will give others the
impression that this item could have higher value than they expected, which induce an over reaction
on this bidding competition through the learning process. In short, if the selling item on average can
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provide detailed information indicating the high common value among bidders, the learning process
in an open ascending auction will help the auctioneers to earn higher expected value compared with
sealed bid auction. However, if the information friction is serious, the expected revenue of the
auctioneer will be hard to predict. And under such a scenario, probably a sealed bid auction is a
better choice.

6.3 Auction outcomes and the informed bidder’s bidding strategy

Regarding the strategic behavior of the informed bidder, I further control the level of bidding activ-
ity for the informed bidder under different situations. The experiment procedure is described in the
appendix. The counterfactual analysis illustrates three scenarios. First, in normal case, the auction-
eer randomly picks one of the bid submitted by all the candidate bidders (including the informed
bidder’s bid). Second, in active case, the auctioneer deliberately chooses the bid submitted by the
informed bidder every other period. Third, in inactive case, the auctioneer randomly picks one of
the bid submitted by all but the informed bidder. The experiment results are shown in Figure 13.

From the figure, we see that under the inactive case, the wining price distribution has significantly
left shift pattern, which implies by strategically freezing their bidding activities, the informed bidders
would have an big impact on the bidding outcomes. Such correlation is sensitive to the component of
noisy part, common value part, and private value part in the bidder’s value distribution. If noisy part
is not very large, which means bidders on average learn the value of the item well. Or the common
value part is not very large, which means bidder’s private value dominate the value of the item. In
both cases, the reliance of other bidder’s bidding behavior is dampened. A key implication of this
experiment shows getting more information is not always good for agents to improve their welfare
or surplus. Sometimes, restricting the insider’s behavior could be beneficial to the public.

Another interesting case is the active bidding strategy. Usually, an active informed bidders will
induce more competitive bidding environment, the learning effect is salient. However, active bid-
ding behavior also prevent information revealing process of other participants, which drag down the
real evaluation of the selling item. Which effect dominates depends on the parameters as well as
the number of bidders. If the active informed bidders can perfectly block other bidders’ bidding
behavior, the more the bidders, the stronger the second effect.

40



7 Conclusion

In common value English auction, recovering the value distribution is non-trivial because mapping
from the value distribution to the bidding distribution is no longer one to one. Due to the multiple
equilibria issue and incompleteness of econometric structure, we face the many to many correspon-
dence issue. Often times, bidders have different levels of information towards the selling items. The
interactions among different types of bidders directly affect the final outcomes.

This paper aims to address those issues using Chinese Judicial auction data. To solve the multiple
equilibria problem, the paper builds a structural auction model that utilizes the bidding history to
construct the upper and lower bound for the value distribution. From the estimation result, the
large portion of noisy component reduces the auction revenue. Moreover, it gives the informed
bidder’s leverage to manipulate the bidding outcomes through some strategic bidding behavior. More
generally, this paper contributes to the literature that study the information asymmetry.

Through the simulation test, informed bidder can significant affect the auction outcome by strategi-
cally choosing her bidding behavior. Indeed, the model is just simple abstraction from the real world
that aims to capture the key influence of information structure. More details are waited for further
research.
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Appendix A.

A.1 Comparison of coefficient vectors between symmetric and asymmetric in-
formation environment

For the convenience of mathematical expression, we first discuss the coefficient vectors of bidder’s
conditional expected value, i.e., Σ∗−1

sym ·σ∗
i and Σ∗−1

asy · σ̄∗
i .

The Σ∗
sym is symmetric and positive definite, we can do the eigenvalue decomposition, where

Σ
∗
sym =


σ2

c +σ2
a +σ2

ε σ2
c · · · σ2

c

σ2
c σ2

c +σ2
a +σ2

ε · · · σ2
c

...
... . . . ...

σ2
c σ2

c · · · σ2
c +σ2

a +σ2
ε


Based on eigenvalue decomposition, we can first derive the eigenvalue:

|Σ∗
sym −λ I|=

∣∣∣∣∣∣∣∣∣∣
nσ2

c +σ2
a +σ2

ε −λ σ2
c · · · σ2

c

nσ2
c +σ2

a +σ2
ε −λ σ2

c +σ2
a +σ2

ε · · · σ2
c

...
... . . . ...

nσ2
c +σ2

a +σ2
ε −λ σ2

c · · · σ2
c +σ2

a +σ2
ε

∣∣∣∣∣∣∣∣∣∣
,

=

∣∣∣∣∣∣∣∣∣∣
1 0 · · · 0
1 σ2

a +σ2
ε · · · 0

...
... . . . ...

1 0 · · · σ2
a +σ2

ε

∣∣∣∣∣∣∣∣∣∣
(nσ

2
c +σ

2
a +σ

2
ε −λ ),

= (nσ
2
c +σ

2
a +σ

2
ε −λ )[σ2

a +σ
2
ε −λ ]n−1 = 0.

So we get the eigen-values λ ∗ = nσ2
c +σ2

a +σ2
ε and λ0 = σ2

a +σ2
ε . After a series of algebra opera-
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tion, when multiplying the σ∗
i =

[
σ2

c , σ2
c +σ2

a , · · · , σ2
c

]T
, we can get (Σ∗

sym)
−1σ∗

i as :

1
n



nσ2
c

λ ∗ +
σ2

a
λ ∗ − σ2

a
λ0

nσ2
c

λ ∗ +
σ2

a
λ ∗ +

n−1σ2
a

λ0
nσ2

c
λ ∗ +

σ2
a

λ ∗ − σ2
a

λ0
...

nσ2
c

λ ∗ +
σ2

a
λ ∗ − σ2

a
λ0


=

1
n



nσ2
c

λ ∗ +
σ2

a
λ ∗ − σ2

a
λ0

nσ2
c

λ ∗ +
σ2

a
λ ∗ − σ2

a
λ0

nσ2
c

λ ∗ +
σ2

a
λ ∗ − σ2

a
λ0

...
nσ2

c
λ ∗ +

σ2
a

λ ∗ − σ2
a

λ0


︸ ︷︷ ︸

learning effect

+



0
σ2

a
λ0

0
...
0


︸ ︷︷ ︸

private valuation

(21)

From equation (21)20, we can divide the coefficient vector into two terms, the first term varies ac-
cording to the number of total bidders while the second term is independent of the number of bidders.
Therefore, the first term is named as the learning effect, and the second term indicates the bidder’s
own private value, named as the private valuation effect. The above procedure introduces how bid-
ders learn from each other under the symmetric information environment. The more participants,
the more information revelation to the public.

Now we turn to the case that an informed bidder joins in the auction. In this scenario, the information
structure has been changed, with Σ∗−1

asy becomes

Σ
∗−1
asy =


σ2

c +σ2
a σ2

c · · · σ2
c

σ2
c σ2

c +σ2
a +σ2

ε · · · σ2
c

...
... . . . ...

σ2
c σ2

c · · · σ2
c +σ2

a +σ2
ε



Again, from the knowledge of linear algebra, we get

Σ
∗−1
I ·σ∗

i =


σ

2
c



σ2
ε

D
σ2

a
D
σ2

a
D
...

σ2
a

D


+σ

2
a



0
σ2

a+σ2
c

(n−1)D
σ2

a+σ2
c

(n−1)D
...

σ2
a+σ2

c
(n−1)D


−σ

2
a



0
1

σ2
a+σ2

ε

1
n−1

1
σ2

a+σ2
ε

1
n−1

...
1

σ2
a+σ2

ε

1
n−1




+



0
σ2

a
σ2

a+σ2
ε

0
...
0


(22)

where D = σ4
a + σ2

a (nσ2
c + σ2

ε ) + σ2
c σ2

ε . From the equation 22, the coefficients are grouped by
different effects, the first term indicates the learning effect, the second term indicates the information

20Under the algebra simplification, 1
n [

nσ2
c

λ ∗ + σ2
a

λ ∗ − σ2
a

λ0
] =

σ2
ε σ2

c
λ ∗λ0
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hidden effect from the informed bidder, and the last term indicates the bidder’s own private effect à
la the uninformed case.

A.2 Information revelation decision: Proof of Lemma 1

This part discusses information revelation decision for the insider. Before the auction begins, the
insider first receives her signal and then decide whether to reveal her identity or not. For the con-
venience of the model deduction, we assume that first, the insider has the highest signal, i.e., the
potential winner of the item; second, bidders drop out at their expected valuation price. Later on, we
will relax the second assumption for generalization.

When making the revelation decision, the informed bidder will consider the reaction of a typical
uninformed bidder under different situations. If the informed bidder decides not to reveal the identity,
the uninformed bidder 2, without loss of generality, will treat all his rivals have the same information
structure. The updating rule is

E[vi|x2,xi, i ∈ {3,4, ...,N},xI
1]+

1
2

Var(vi|xi,x−i;θ ,Ωt)),

where the second term is of conditional variance is constant by the property of normal distribution.
Notice that xI

1 represent the informed bidder’s signal but not revealing her identity. Since bidder 2
believe the environment is symmetric, we have the following expression (as in equation (10)):

E[vi|x2,xi, i ∈ {3,4, ...,N},xI
1] = (µi −µ

∗′
Σ
∗−1

σ
∗
i )+(xi,x−i)

′
Σ
∗−1

σ
∗
i

= A+β1x2 +β2

N

∑
i=3

xi +β3xI
1,cut (23)

where A = (µi−µ∗′Σ∗−1σ∗
i )+

1
2

[
σ2

i −σ∗′
i Σ∗−1σ∗

i
]

represent the constant component, β1, β2 and β3

are the coefficients from the decomposition of Σ∗−1
sym σ∗

i . Based on the decomposition of coefficient

vectors Σ∗−1σ∗
i , we can see that β2 = β3 , β1 > β2, and β1 − β2 =

σ2
a

λ0
. On the other hand, if the

informed bidder decides to reveal the identity, The updating rule for bidder 2 becomes:

Ē[vi|x2,xi, i ∈ {3,4, ...,N},xI
1] = (µi −µ

∗′
Σ
∗−1

σ
∗
i )+(xi,x−i)

′
Σ
∗−1

σ
∗
i

= Ā+ β̄1x2 + β̄2

N

∑
i=3

xi + β̄3xI
1,cut (24)

where Ā is the constant term, β̄1, β̄2 and β̄3 are the coefficients from the decomposition of Σ∗−1
asy σ∗

i .
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Next, we will investigate how the two functions varies with the informed bidder’s signal conditional
on the uninformed bidders’ signals. The first step is to find the relationship between the two sets of
coefficient vectors. Therefore we have the following lemma.

Lemma 5. From the uninformed bidder’s updating rule and the information structure under two

different environments. We have that β̄3 > β3 , β̄2 < β2, and β̄1 < β1.

Recall that coefficient vectors for asymmetric and symmetric cases Σ∗−1
asy ·σ∗

i and Σ∗−1
sym σ∗

i are

Σ
∗−1
asy ·σ∗

i =


σ

2
c



σ2
ε

D
σ2

a
D
σ2

a
D
...

σ2
a

D


+σ

2
a



0
σ2

a+σ2
c

(n−1)D
σ2

a+σ2
c

(n−1)D
...

σ2
a+σ2

c
(n−1)D


−σ

2
a



0
1

σ2
a+σ2

ε

1
n−1

1
σ2

a+σ2
ε

1
n−1

...
1

σ2
a+σ2

ε

1
n−1




+



0
σ2

a
σ2

a+σ2
ε

0
...
0


,

Σ
∗−1
sym σ

∗
i =

1
n



nσ2
c

λ ∗ +
σ2

a
λ ∗ − σ2

a
λ0

nσ2
c

λ ∗ +
σ2

a
λ ∗ − σ2

a
λ0

nσ2
c

λ ∗ +
σ2

a
λ ∗ − σ2

a
λ0

...
nσ2

c
λ ∗ +

σ2
a

λ ∗ − σ2
a

λ0


+



0
σ2

a
λ0

0
...
0


,

where λ ∗ = nσ2
c +σ2

a +σ2
ε , λ0 = σ2

a +σ2
ε , and D = σ4

a +σ2
a (nσ2

c +σ2
ε )+σ2

c σ2
ε . And the symmetric

learning effect per element is σ2
ε

[
σ2

c
(σ2

a+σ2
ε )(nσ2

c +σ2
a+σ2

ε )

]
. While the learning effects from the informed

xI
1 and uninformed rivals xi are

σ2
ε σ2

c
D informed

σ2
c σ2

a (n−1)+σ2
a (σ

2
a+σ2

c )
D(n−1) − 1

(n−1)
σ2

a
σ2

a+σ2
ε

=
σ2

a σ2
ε σ2

c
D(σ2

a+σ2
ε )

uninformed

Therefore β̄3 −β3 become:

β̄3 −β3 =
σ2

ε σ2
c

σ4
a +σ2

a (nσ2
c +σ2

ε )+σ2
c σ2

ε

−σ
2
ε

[
σ2

c

(σ2
a +σ2

ε )(nσ2
c +σ2

a +σ2
ε )

]
= σ

2
ε σ

2
c

1
(σ4

a +σ2
a (nσ2

c +σ2
ε )+σ2

c σ2
ε )(σ2

a +σ2
ε )(nσ2

c +σ2
a +σ2

ε )
σ

2
ε

[
(n−1)σ2

c +σ
2
a +σ

2
ε

]
> 0
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Similarly, it is straightforward to see that β̄2 −β2 < 0:

β̄2 −β2 =
σ2

a σ2
ε σ2

c

D(σ2
a +σ2

ε )
−
[

σ2
ε σ2

c

(σ2
a +σ2

ε )(nσ2
c +σ2

a +σ2
ε )

]
=−σ2

c σ2
ε

1
σ2

c σ2
ε

Dλ ∗λ0
.

For the constant part, we need to compare the summation of 1Σ∗−1
asy ·σ∗

i and 1Σ∗−1
sym σ∗

i . Notice that
the private value part is identical for the symmetric and asymmetric case. It is the learning effect
term that determines the relationship between Ā and A. From β̄3 −β3 > 0, the first row in 1[Σ∗−1

asy ·
σ∗

i −Σ∗−1
sym σ∗

i ] is positive. But the rest of rows are negative, (e.g.,β̄2 −β2 < 0). But the summation is
positive since (β̄3 −β3)+(n−2)(β̄2 −β2)+(β̄1 −β1)≡ (β̄3 −β3)+(n−2)(β̄2 −β2)+(β̄1 −β1)

1[Σ∗−1
asy ·σ∗

i −Σ
∗−1
sym σ

∗
i ] = σ

2
ε σ

2
c

1
Dλ ∗λ0

σ
2
ε

[
(n−1)σ2

c +σ
2
a +σ

2
ε

]
− (n−1)

σ2
c σ2

ε

1
σ2

c σ2
ε

Dλ ∗λ0

=
σ4

ε σ2
c

Dλ ∗λ0

[
σ

2
a +σ

2
ε

]
> 0

So considering the constant term A = ui−µ∗′Σ∗−1σ∗
i +

1
2

[
σ2

i −σ∗′
i Σ∗−1σ∗

i
]
, we get that Asym > Aasy

holds. Moreover, fixing other signals x2, ...xn, we see that the expected value of bidder 2 is increasing
with respect to xI

1. The slop is β2 and β̄2.

Lemma 6. Given the information structure, the constant term in uninformed bidder’s conditional

expectation is defined as

A f = ui −µ
∗′

Σ
∗−1
f σ

∗
i +

1
2

[
σ

2
i −σ

∗′
i Σ

∗−1
f σ

∗
i

]
, f ∈ {sym,asy}.

Moreover, Asym > Aasy.

So far, we have shown that uninformed bidder’s expected updating rules, (23) and (24), have the
crossing point. But the point not only depends on xI

1, but also other bidders’ signals. To find the
crossing point, the informed bidder needs to integrate out other bidders’ signals, i.e., x2, ....,xn. The
reason that a typical uninformed bidder cares rivals’ signal is because the common value component
from the item value. Hence, the cutoff point is closely correlated with the common value realization
c. To see this, assuming the common value part of the item is c. Conditional on c, the informed
bidder will derive the expected updating rules so as to pin down the cutoff point. Depending on her
own private value aI , the informed bidder will decide whether to reveal her identity or not.

Based on the information structure, we know that conditional on c, x2, ...xn are i.i.d. distributed. To
get the typical (the second highest) uninformed bidder’s expected valuation, we take advantage of
the property of order statistics. Using the expectation of the order statistics, the informed bidder now
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can construct the bidding decisions with respect to the updating rules under symmetric case:

E

[
A+β1x2 +β2

n

∑
i=3

xi +β3xI
1|c

]
= L(c)+β1E̊(1,N −1)+β2

N

∑
i=3

E̊(i−1,N −1)+β3aI

where

L(c) = A+ c[β1 +(N −2)β2 +β3]

and asymmetric case

E

[
Ā+ β̄1x2 + β̄2

N

∑
i=3

xi + β̄3xI
1|c

]
= L(c)+ β̄1E̊(1,N −1)+ β̄2

N

∑
i=3

E̊(i−1,N −1)+ β̄3aI

where

L(c) = Ā+ c[β̄1 +(N −2)β̄2 + β̄3]

Since the order statistic of a sequence of random variables y1, y2, ..., yn is just a rearrangement of
the random variables, the equation ∑

n
i=1 y(i) = ∑

n
i=1 yi holds in all generality. Based on this property,

we know that
N

∑
i=3

E̊(i−1,N −1) =
N

∑
i=2

E(y)− E̊(1,N −1) = 0− E̊(1,N −1). (25)

Now we define the decision function h and the corresponding cutoff point xcut

h(xI
1|c,N) = E

[
A+β1x2 +β2

N

∑
i=3

xi +β3xI
1|c

]
−E

[
Ā+ β̄1x2 + β̄2

N

∑
i=3

xi + β̄3xI
1|c

]
= A− Ā+ c[∆β1 +(N −2)∆β2 +∆β3]

+∆β1E̊(1,N −1)−∆β2E̊(1,N −1)+∆β3aI

= A− Ā+ c[∆β1 +(N −2)∆β2 +∆β3]+∆β3aI

= A− Ā+ c[∆β1 +(N −2)∆β2]+∆β3xI
1

Notice that with the help of (25), ∆β1E̊(1,N − 1)−∆β2E̊(1,N − 1) are canceled out (∆β1 = ∆β2).
And we know that ∆β1 > 0 and ∆β2 > 0. Therefore, the higher c (assuming c > 0), the lower the
constant term, resulting in a smaller private value component aI , dacut

dc > 0. Meanwhile, we also learn
that the relationship between aI and c: the higher c is, the smaller aI will be. The above results prove
the Proposition 1. If we allow early dropout, we will over estimate lower ranked bidders’ signals
i.e., ∑

N
i=3E[xi|x j ≥ x j∀ j]≥ ∑

N
i=3E[xi] . This will add an extra negative constant term denoted by ∆E
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on the left hand side of h(xI
1|c,N).

We define c = g(xcut):

c =− A− Ā+∆E
[∆β1 +(N −2)∆β2]

+
−∆β3

[∆β1 +(N −2)∆β2]
xI

1

= γ0 + γ1xcut

It is not hard to get γ1 > 1. Notice that the validation of this information revelation argument depends
on an implicit assumption that the common value part is low c< 0. When c< 0, we have xcut > c and
aI > 0. This justifies our key points that when the selling item is high valued, the informed bidder
does not have any incentive to reveal the identity. Only when the selling item is not so valuable,
the informed bidder can leverage her information advantage to earn extra premium. Revealing the
identity will further reinforce other bidders’ negative expectation towards the common value part,
dampening the competition.

A.3 Proof of Proposition 2

Similar to the proof of Proposition 2 in Hong and Shum (2003), we show that if all bidders j 6= i

follow their own equilibrium strategies β k
j (·) in round k, bidder i’s best response is to play β k

i (·)
because this guarantees that bidder i will win the auction if and only if her expected net payoff is
positive conditional on winning.

Given the current bidding price of bidder i, Pk
i , if bidder i wins the auction at the beginning of round

k when all remaining bidders simultaneously exit at a price of Pk
i , her ex-post valuation is:

E[Vi|Xi,Xk
j ≤ X j ≤ X , ∀ j 6= i;Ωk].

Since this conditional expectation is increasing in Xi (from Assumption 1), bidder i makes a positive
expected profit from winning in period t by staying actively in the auction at a price of P if and only
if Xi ≥ (β k

i )
−1(Pk

i ;Ωt) ⇔ β k
i (Xi;Ωt) ≥ Pk

i . Typically, β k
i (Xi,Ωt) specifies the price below which

bidder i makes a positive expected profit by staying in the auction and above which bidder i makes a
negative expected profit by staying in the auction. Therefore, for every realization of Xi, β k

i (Xi;Ωt)

specifies a best-response dropout price for bidder i in round k.
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A.6 Proof for the Proposition 3

The key to the proof is to derive the analytical expression of Σ∗−1σ∗
i under different situation, i.e.,

with or without the informed bidder. For simplicity I will put the informed bidder, if there exist one,
in the first position and the bidder i in the second position (i = 2, I = 1). The inverse matrix for
uninformed and informed cases is denoted by Σ∗

sym and Σ∗
asy, respectively.

First, under the symmetric case of Σ∗−1
sym σ∗

i in equation (21), it is straightforward to see that as the
number of participants increases, the side impact from the noisy component of the bidder’s signal
will be addressed by the learning effect of numerous rivals. Mathematical speaking,

lim
n→∞

1 · (Σ∗
0)

−1
Γ = 1.

Second, under the asymmetric case of Σ∗−1
asy σ̄∗

i in equation (22), we see that in the first term, the
weighting from the insider (the first row) is closely related to the noisy component. Also, the pres-
ence of the informed bidder will prevent the bidder learning from other informed rivals’ behavior,
reducing the learning effects from other uninformed bidders. This also explains why informed bid-
ders can manipulate the bidding outcomes through his/her strategic bidding behavior. But such
influence will be offset by the increasing number of participants. Since more and more people join
in the auction, the behavior of the informed bidder becomes not so valuable any more. We get the
following relationship:

1 · (Σ∗
0)

−1
Γ = 1− 2σ2

c σ2
a +σ2

c σ2
ε

D

where 2σ2
c σ2

a+σ2
c σ2

ε

D is equivalent to the informed bidder’s learning coefficient. As n → ∞, limn→∞ 1 ·
(Σ∗

0)
−1Γ = limn→∞ 1− 2σ2

c σ2
a+σ2

c σ2
ε

D = 1 as well.

A.4 Explanation of Curse Relief.

The conjuncture is equivalent to show as X increases,

d
dX

{
E[Vi|Xi;xi ≥ X j ≥ X j, ∀ j 6= i]−E[Vi|Xi;X j ≥ X j, ∀ j 6= i]

}
< 0.
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Due to the property of the conditional expectation and truncated normal distribution, we learn that

d
dX

{
E[Vi|Xi;xi ≥ X j ≥ X j, j 6= i]−E[Vi|Xi;X j ≥ X j, ∀ j 6= i]

}
n

d
dX

R
{

φ(X j)−φ(xi)

Φ(xi)−Φ(X j)
−

φ(X j)

1−Φ(X j)
, ∀ j 6= i

}
Without loss of generality, I assume that α = X j and β = xi. Then we can get

φ(α)−φ(β )

Φ(β )−Φ(α)
− φ(α)

1−Φ(α)
=

φ(α)[1−Φ(β )]−φ(β )[1−Φ(α)]

(1−Φ(α))(Φ(β )−Φ(α))
≡ A(α)

It is not hard to see that

d
dα

A(α) =
φ(α)[−α(1−Φ(β ))+φ(β )+(1−Φ(α))]

(1−Φ(α))2(Φ(β )−Φ(α))2 ,

where φ ′(α) = −αφ(α). As α ↑, −α(1−Φ(β ))+ φ(β )+ (1−Φ(α)) < 0, which indicates the
alleviation of the curse.
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Appendix B. Tables and Graphs

Table 5: Estimated results for value distribution

No priority bidder whole sample After 2017

σc 0.2023 0.2032 0.211
[0.1558, 2460] [0.1530, 0.2535] [0.1658, 0.2760]

σa 0.1335 0.1328 0.1382
[ 0.1035, 0.160] [0.1018, 0.1628] [0.1080, 0.1550

σε 0.251 0.2474 0.2547
[0.2160, 0.3064 [0.2270. 0.3075] [0.2064, 0.3154]

µ

Reserve price 0.9971 0.9971 0.9971
Has priority bidder 0.0395 0.0395 0.0395
Min Obj Value 0.1118 0.1125 0.1272
N 8223 8294 6495

Table 6: Information Parmeter for Simulation

name moment parameter value

common value c mean µc -0.35
std σc 0.2023

private value a mean µa 0
std σa 0.1382

noise ε mean µε 0
std σε 0.2474

control coefficient r 0.7
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Figure 4: Empirical Distribution for the number of bidders
This figure shows the empirical distribution for the number of bidders participated in each auction.
Here I restrict the number of bidders no higher than 15 (Only less than 0.5% of auctions have more
than 15 bidders).
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Figure 6: Number of bidders for the priority bidder
This figure shows that auctions with priority bidders on average have less participants. The mean
value of the bidders under auctions with a priority bidder is 6.33 while the number is 6.60 under
auctions without a priority bidder.
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Figure 7: Information Premium and Variations of lower bounds

In this numerical example, I fix the number of bidders equal to 5 and change the lower bound for an
informed and uninformed rivals. The parameter set is assumed to be µx =−0.06, r = 0.7, σc = 0.2,
σa = 0.15, σε = 0.25, ∆ = 0.005. And the variation for the rival’s lower bound ranges from −0.4539
to 0.6068. The value is picked from the lower bound recovered from the logarithm of the reservation
ratio plus three standard distance from the σx =

√
σ2

c +σ2
a +σ2

ε . The unchanged rival’s lower bound
is the middle point of the variation, 0.0764. And the bidder i’s private signal is assigned with the
mean value −0.06.
The graph indicates how the changes of information premium respond to the lower bound of rival’s
private signal. The blue line indicates the case when the uninformed rival raises the lower bound,
which has a downward pattern. And the red line indicates the case when the informed rival changes
the lower bound, indicating an increasing pattern. This implies that a high valued informed rival will
significantly incentivize bidders to have a higher evaluation and bid more aggressively.
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Figure 8: Information Premium and Number of bidders

Similar to Figure 7, I change the number of bidders to see how the premium varies as the number
of bidders increases. The parameter set is assumed to be µx =−0.06, r = 0.7, σc = 0.2, σa = 0.15,
σε = 0.25, ∆ = 0.005. The number of bidders ranges from 4 to 8. The variation for the rival’s lower
bound ranges from −0.4539 to 0.6068. The value is picked from the lower bound recovered from
the logarithm of the reservation ratio plus three standard distance from the σx =

√
σ2

c +σ2
a +σ2

ε .
The unchanged rival’s lower bound is the middle point of the variation, 0.0764. And the bidder i’s
private signal is assigned with the mean value −0.06.
The left side figure displays the case for the changes of the uninformed rival, while the right side
figure depicts the informed rival’s case. Consistent with the proposition conclusion, As the number
of bidders increases, the information premium decreases quickly, even to the negative value.

Figure 9: Winning outcome distribution under the informed bidder’s strategic behavior

win price

standard
inactive
active
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