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Conventional monetary policy involves actions by the monetary and fiscal authorities: the former sets a
nominal interest rate and the latter sets lump-sum taxes to finance the implied flow of interest payments on
government debt. We model such policy within an overlapping generations framework and show that absent
any other frictions the magnitude of the nominal interest rate gives rise to asset substitution between govern-
ment debt and either private debt or capital—substitution that has both real and nominal effects. Such substi-
tution is not in standard New Keynesian models because their dynastic specification implies that government
debt is not net wealth.

1. introduction

A common view is that the interest rate set by the central bank, the nominal rate on nom-
inal short-term government debt, affects the attractiveness of alternatives assets such as com-
mon stock and housing. For example, the long period of low interest rates that began with the
2008 financial crisis is often claimed to have led to a flight toward real and risky assets, and
the tightening of monetary policy in 2022 is viewed as having effects in the opposite direction.
Such asset-substitution effects are missing in most, if not all, standard New Keynesian (NK)
models and real business cycle (RBC) models because they are dynastic models in which gov-
ernment debt is not net wealth. Although it is well known that government debt is net wealth
in overlapping generations (OLGs) models, no one has drawn attention to what such models
imply for the effects of conventional monetary policy.

The failure to do so is somewhat surprising because OLG models are widely used for a
variety of purposes. It has become common to study various aspects of taxation and insur-
ance within life-cycle models either without bequest motives or with warm-glow bequest mo-
tives (Braun et al., 2019; Heathcote et al., 2020). Moreover, in several recent papers, aspects
of macroeconomic policy are studied in such models: see, for example, Kaplan et al. (2018),
Caballero and Farhi (2017), and Blanchard (2019). Although it is well known that Ricardian
equivalence fails in such models, no one has drawn attention to an obvious implication of such
models for conventional monetary policy: even in the absence of any frictions, conventional
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monetary policy has real consequences in such models because it determines the return on
government debt and, thereby, the composition of the public’s portfolio between government
debt and other assets. We call attention to that implication here and call it revisiting the asset-
substitution channel because it harkens back to Tobin’s views about the effects of monetary
policy (Tobin, 1969).

For us, and we think that this is standard, conventional monetary policy is defined as fol-
lows: the monetary authority sets a nominal interest rate (a path or rule for it) and the fiscal
authority cooperates by setting lump-sum taxes to cover the implied flow of interest payments
on (net) government debt (Woodford, 2010). Part of what is new here is our simple concep-
tion of conventional monetary policy. We assume that there is a positive and constant nominal
stock of government debt and that the monetary authority sets the path of the nominal inter-
est rate on that debt with interest payments financed by lump-sum taxes. We treat the debt
as perpetuities with a time-varying nominal dividend, a treatment that is equivalent to hav-
ing one-period debt that is rolled over period after period. In accord with the above definition
of conventional monetary policy, lump-sum taxes are levied only to cover interest payments;
they do not finance redemption of the debt. The amount of nominal government debt does
not matter, provided that it is positive. Therefore, we normalize it to be unity per capita. We
could, we think, also allow it to be negative, but we do not pursue that here. Only zero would
be problematic.

Such debt differs from money in two respects: it has a nominal yield financed by lump-sum
taxes and in order for it to be valuable it must be part of an optimal private-sector portfolio
based solely on its rate-of-return distribution. If there is no uncertainty, then it and other as-
sets must have the same real rate of return if they are held. The debt resembles money in that
there is always an equilibrium in which the debt is worthless. We, of course, focus on equilibria
in which it is valuable. Also, we omit cash, a nominal asset with a zero nominal return, a fea-
ture we share with most NK and RBC models.1 Because our main purpose is to revive a de-
bate about a channel for the effects of monetary policy, we describe that channel in four sim-
ple OLG models.

Throughout, we abstract from growth. Three of our models are deterministic. In them, it is
well known that a competitive equilibrium, our concept of equilibrium, is Pareto-efficient if
there is convergence to a positive real interest rate. All our equilibria, by construction, sat-
isfy that condition. It follows that the role of monetary policy in those models is distributional.
The welfare economics of stochastic OLG models is not straightforward. Therefore, for our
stochastic model, we have only descriptive results.

The first model is a deterministic pure-exchange setting in which government debt com-
petes with private borrowing. The second and third models are versions of Diamond (1965) in
which saving is exogenous so that any effect of conventional monetary policy comes from as-
set substitution. The fourth model is a version of Blanchard (1985), a continuous-time model.
We use it, in part, to study a more plausible relationship between investment and the capital
stock than is possible in Diamond (1965).

As is well known, Diamond (1965), Blanchard (1985), and Blanchard (2019) study the role
of real debt in OLG models. We, in effect, show that the quantity of real debt in their mod-
els can come about from a given and fixed amount of nominal debt and different settings of
the nominal interest rate under conventional monetary policy. Finally, because our proofs are
standard, we relegate them to an appendix.

1 A version of the so-called Tobin effect shows up in models with cash and capital when the return on cash is varied
by way of different inflation rates produced by different rates of money creation achieved through lump-sum taxes
and transfers. See Bhattacharya et al. (2009) and Aruoba et al. (2011). Such policies do not, however, resemble con-
ventional monetary policy.
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“conventional” monetary policy in olg models 877

2. a pure-exchange olg model of two-date lived people

We let the first date be t = 1 and let generations be labeled by when they first appear. There
is one good per date, N people in a generation, and the setting is stationary in the follow-
ing sense. Person n in generation t ≥ 1 has a utility function un(cn,t

t , cn,t
t+1) and an endowment

(wn,t
t ,wn,t

t+1) = (an, bn) ∈ R2
++, where the subscript denotes the date and the superscript iden-

tifies the person and where c denotes consumption. We assume that un is strictly increasing,
strictly concave, continuously differentiable, satisfies Inada-type conditions that insure that
consumption choices are both positive whenever the after-tax budget set is not empty, and
is such that both goods are normal goods. As regards members of generation 0, each owns
some amount of government debt, which in total is N, and some positive amount of the date-
1 good, which in total is

∑N
n=1 bn, and wants to consume as much as possible. An allocation is

feasible if
∑N

n=1(cn,t
t + cn,t−1

t ) ≤ ∑N
n=1(an + bn).

We let pt denote the unit price of debt at date-t in units of the date-t consumption good. We
assume that the interest rate on government debt, it , is in units of the debt. People when old at
t are subject to real lump-sum taxes that total Nptit over the members of generation t − 1. We
let rt+1 denote the one-period real interest rate earned on saving at date-t. We also let Npt be
the total ex dividend value of the government debt at date-t.

The choice problem of person-n of a generation t ≥ 1 is as follows:

Problem 1. Choose (cn,t
t , cn,t

t+1) ∈ R2
+ to maximize un(cn,t

t , cn,t
t+1) subject to

cn,t
t + cn,t

t+1/(1 + rt+1) ≤ an + (bn − τ n
t+1)/(1 + rt+1),(1)

where τ n
t+1 ≥ 0 is the value of the lump-sum tax payable when old.

An equilibrium in which government debt is worthless is defined as follows:

Definition 1. An equilibrium with pt = 0 for all t ≥ 1 and τ n
t+1 = 0 for all n and t ≥ 0 is

a sequence {rt+1}∞t=0 and a feasible allocation that solves Problem 1 and satisfies
∑N

n=1 cn,t
t =∑N

n=1 an.

An equilibrium in which government debt is valuable is defined as follows:

Definition 2. Let {it+1}∞t=1 be given. An equilibrium with pt > 0 for all t ≥ 1 is a sequence
{pt, rt+1}∞t=1, a feasible allocation, and {τ n

t+1}∞t=0 for each n such that (i) the right-hand side of
(1) is positive for all n and t ≥ 1; (ii) Problem 1 is solved; (iii) (1 + it+1)pt+1/pt = (1 + rt+1) for
all t ≥ 1; and (iv)

∑N
n=1 τ n

t+1 = Npt+1it+1 for t ≥ 0.

An equilibrium with pt = 0 and no taxes is an equilibrium in which there is no trade be-
tween generations, the last condition in Definition 1. We have nothing new to say about such
equilibria. In particular, as is well known, nothing insures that such equilibria are efficient.
However, because we want to emphasize that our analysis of monetary policy does not de-
pend on inefficiency, we limit consideration to Definition 1 steady states that are efficient. We
therefore make the following assumption:

Assumption 1. Let pt = 0 for all t ≥ 1 and τ n
t+1 = 0 for all n and t ≥ 0. The preferences and

endowments are such that (i) there exists a Definition 1 equilibrium with rt+1 = r∗ > 0 and (ii) if
r > r∗, then the solution to Problem 1 satisfies

∑N
n=1 cn,t

t <
∑N

n=1 an.

This assumption is obviously nonvacuous. We can then state and prove the following two
propositions:
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878 hu et al.

Proposition 1. Let it+1 = i > r∗ for all t ≥ 1 (see Assumption 1). There exists a Definition 2
equilibrium with rt+1 = i and pt = p > 0 for all t ≥ 1.

Now we describe the effects of a one-period deviation from such a steady state.

Proposition 2. Let i > r∗ and let {it+1}∞t=1 be such that it+1 = i for t ≥ 2, and let p > 0 be the
Proposition 1 constant per capita value of the debt determined in a Proposition 1 equilibrium.
Then, for any i2, there exists an equilibrium with pt > 0 for all t in which the real interest rate at
date-1 is higher than i if i2 > i and is lower than i if i2 < i.

Notice that under Assumption 1, any Proposition 1 equilibrium or any Proposition 2 equi-
librium is Pareto-efficient. Because the real return sequences differ among these equilibria as
do the lump-sum taxes, those equilbria have different allocations, and hence, are noncompara-
ble. In general, the initial old, the members of generation 0, fare differently among those equi-
libria. And, in general, borrowers and lenders also fare differently among them.

3. capital in an olg model of two-date lived people

Here, there is no diversity within a generation. The term per capita means division by the
size of a generation. Each person supplies one unit of labor when young and nothing when old
and maximizes the expected utility of consumption when old. Hence, per capita saving is the
wage. The technology is a standard constant-return-to-scale technology and labor and capital
earn their respective marginal products. We let kt denote the per capita stock of capital enter-
ing date-t, the only initial condition, and let z f (kt ) be per capita output at date-t, where z > 0
and f is twice differentiable, strictly increasing, and strictly concave. We also assume that capi-
tal fully depreciates in a period. Because saving is unaffected by the return on saving, any real
response to monetary policy arises from asset substitution. Here, each young person’s port-
folio, which consists of some government debt and some capital, is determined by the condi-
tion that rates of return on the two are equalized. Under the assumption that capital and labor
earn their marginal products, the date-t per capita wage is

wt = z( f (kt ) − kt f ′(kt )),(2)

which is also per capita saving. That saving is split between an amount that will be kt+1, the
gross yield on which is z f ′(kt+1), and an amount that is the real value of the per capita debt
of the government at t. As above, a lump-sum tax payable when old finances interest on the
debt.

Therefore, we have the following definition of equilibrium with valuable debt:

Definition 3. Given k1 and a sequence for it+1 for t ≥ 1, a sequence for (kt+1, pt ) for t ≥ 1
with pt > 0 for all t is an equilibrium if

wt = kt+1 + pt ,(3)

and

z f ′(kt+1) = pt+1(1 + it+1)/pt .(4)

We start by defining and describing steady states with valuable government debt. Given
it+1 = i for t ≥ 1, a steady state with p > 0 is (k, p) such that (kt+1, pt ) = (k, p) is an equilib-
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“conventional” monetary policy in olg models 879

rium for the initial condition k1 = k. By (3), such a steady state exists iff w > k. By (2), that
inequality is equivalent to

z f (k)/k > 1 + z f ′(k).(5)

We impose (5) by way of the following assumption:

Assumption 2. The function z f (·) is such that there exists k∗ > 0 so that if k ∈ (0, k∗), then
(5) is satisfied.

It follows from this assumption that if i∗ = z f ′(k∗) − 1, then there is a unique steady state
with valued government debt for any i > i∗. Notice that if f (k) = kα with α ∈ (0, 1), then (5)
reduces to z(1 − α) > k1−α , so Assumption 1 holds with ln k∗ = ln(z(1 − α))/(1 − α). Also, if
f is CES with elasticity of substitution that exceeds unity, then Assumption 2 holds. It does
not hold if the elasticity of substitution is less than unity.

It will be convenient to work with a second-order difference equation in kt . Recall that wt

is the function of kt given in (2). We use (3) to express pt in terms of kt and kt+1 and pt+1 in
terms of kt+1 and kt+2 and substitute those expressions into (4), and we obtain

kt+2 = wt+1 − z f ′(kt+1)(wt − kt+1)/(1 + i).(6)

There is a single initial condition and one-side condition: wt > kt+1 (see (5)).
Let us start from the steady state for t = 1. We are interested in the effect of a one-date de-

viation of i2 from its steady-state magnitude, a kind of impulse-response function. We describe
it in two steps. We first show that the above steady state is locally saddle-path stable. Let k be
the unique steady state associated with i. Let k2 be an arbitrary initial condition at date-2 in
the appropriate neighborhood of k. Then, associated with each such k2, there is an associated
equilibrium that also gives us an associated p2. In the next step, we can associate with each
such (k2, p2) an i2 that satisfies the equilibrium conditions, (3) and (4), for t = 1. In particu-
lar, because w1 is implied by k , k2 implies p1 by way of (3). Then, we can use (4) to find the
implied i2. If this mapping from k2 to i2 is monotone, then it can be inverted. If so, then we
have the impulse response function. The part from t = 1 to t = 2 is given by the inverse of the
mapping from k2 to i2; the rest is given by the local stability result.

Proposition 3. Assume that i > z f ′(k∗) − 1 (see Assumption 2).

1. The unique steady state with valued government debt is locally saddle-path stable.
2. Starting from the unique steady state with valued government debt, a one-period increase

in the nominal interest reduces the next period’s capital stock.

For a numerical example, we display the impulse response functions in the Online Ap-
pendix.

4. risky capital in an olg model of two-date lived people

In essentially all NK and RBC models, there are TFP shocks that make capital a risky as-
set. Here, we adopt the same model as in the previous section, except that we add such shocks
by making z in the previous model random. In the presence of such shocks, there is a port-
folio decision for each young person at t. We assume that each chooses a portfolio of capital
and government debt to maximize the expected value of u(ct+1), where, as we now assume, u
is strictly increasing and strictly concave.

The date-t realization of z is denoted as zt , which is assumed to follow a first-order Markov
process on a finite support Z. Then the state of the economy at t is (kt, zt ). In general, we for-
mulate policy, the choice of the nominal interest rate, as the choice of a function of the state;
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880 hu et al.

say, it+1 = g(kt, zt ). As this suggests, we assume the following timing. Entering date-t, kt is in-
herited from the past. Then zt is realized. Then it+1 is determined. Finally, the young choose
their portfolio.

We do not see a simple way to describe the kind of g functions consistent with an equilib-
rium with valued government debt. One way to find a class of such functions is to use a ver-
sion of backsolving. In particular, we find the g function that supports an equilibrium that has
a constant ratio of the value-of-debt to the wage. Call that ratio γ . Then, we would have

kt+1 = (1 − γ )wt and pt = γwt .(7)

This is simple because for a given γ , we have a closed-form expression for how the state,
(kt, zt ), evolves and how pt evolves, given that wt depends on (kt, zt ) in a known way.

All that remains is to find the process for it+1 that makes γ an optimal portfolio choice.
Here is the portfolio choice problem.

Problem 2. Choose (kt+1, bt+1) to maximize Eu(ct+1) subject to

ct+1 = (1 + it+1)pt+1bt+1 + zt+1kt+1 f ′(k̄t+1) − it+1 pt+1b̄t+1,

and

w(kt, zt ) = kt+1 + ptbt+1,

where pt+1 = γ zt+1( f (k̄t+1) − f ′(k̄t+1)k̄t+1)/b̄t+1 and E denotes expectation taken with respect
to the distribution of the random variable zt+1.

In this choice problem, the individual takes aggregate capital stock k̄t+1 and aggregate debt
stock b̄t+1 as given. The associated g comes directly from the first-order condition for the
above choice problem after equating (k̄t+1, b̄t+1) to (kt+1, bt+1).

Now, in place of Assumption 2, we make the following assumption about the wage function,
w(z, k) ≡ z( f (k) − f ′(k)k):

Assumption 3. The function w(z, k) is increasing and concave in k, in addition,
limk→0+ w(z,k)

k = +∞, and limk→+∞
∂w(z,k)

∂k < 1.2

Then we have the following result:

Proposition 4. Assume (7) and fix γ ∈ (0, 1). There exists a unique equilibrium with an as-
sociated ergodic set for the state (kt, zt ) that is supported by the following rule for the nominal
interest rate:

1 + it+1 = f ′((1 − γ )wt )wt

f ((1 − γ )wt ) − f ′((1 − γ )wt )(1 − γ )wt
.(8)

Because wt depends on the state at t, so does it+1. We suspect that this simple expression for
it+1 comes about because (7) implies that for any given it+1, the gross returns on capital and
government debt are perfectly correlated.

We compute average impulse response functions for this model following the procedure
described in Koop et al. (1996). We assume that Z = {9, 11} and that Pr(zt+1|zt ) ≡ 1/2, a
uniform i.i.d. process for the shock. We also let f (k) = k1/3 and u(c) = log(c). We simulate

2 It is straightforward to verify that both the Cobb–Douglas production function and the CES production function
with elasticity of substitution greater than 1 satisfy these conditions for all z > 0.
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“conventional” monetary policy in olg models 881

Figure 1

impulse response functions of kt and pt

20,000 economies for 265 periods with t ∈ {−249,−248, . . . ,−1, 0, 1, . . . , 15}. At each period
t, given zt and kt , we first calculate the wage wt = (1 − α)ztkα

t , and then, update kt+1 = (1 −
γt )wt and pt = γtwt . The initial capital stock k−249 = 1.8764 and γt = 0.7718 for t 
= 1 , which
are chosen to maintain the consistency with other impulse response functions in the Online
Appendix.3

For t = 1, we impose the one-date shock γ1 = 0.8220 that corresponds to the value of i2
in the deterministic case in the Online Appendix. We drop the first 249 periods, which are
used to approximate an ergodic distribution. We then calculate the mean of kt and pt across
economies, respectively. We report these “average” impulse responses starting at 0 and rela-
tive to their averages for γ = 0.7718. Figure 1 displays the impulse response functions for kt

and pt .
These average responses are very similar to what we found for the deterministic example of

the second model (see Online Appendix).

5. an olg model with long-lived people and capital

In this section, we use the framework of Blanchard (1985) because it allows us to choose
both a more realistic depreciation rate of capital and a more realistic mortality rate. Instead
of using the model to study different paths of real debt as in Blanchard (1985), we assume that
the government debt is a fixed nominal quantity and that the nominal interest rate path on it
is determined by monetary policy. As may be obvious, a path of real debt in Blanchard (1985)
can be replicated by a path of the nominal interest rate in our model.

3 We treat a period as 20 years. We assume a steady-state real interest rate of 4% per year (i.e., the average real in-
terest rate in the United States from 1970 to 2018) and a deviation that raises i by 1.3% per year (i.e., one standard
deviation of cyclical part of real interest rate). That is, i = (1 + 0.04)20 − 1 = 1.1911, which implies that γ = 0.7718
, and i2 = (1.04 + 0.013)20 − 1 = 1.8091, which implies that γ1 = 0.8220. Also, the level of capital (k) at the steady
state is 1.8764.
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882 hu et al.

As in Blanchard (1985), at time t, an agent born at time s has consumption c(s, t), owns cap-
ital stock k(s, t), and holds nominal debt b(s, t). The agent also provides one unit of labor sup-
ply to earn the labor income w(t). The capital stock, which depreciates at rate δ, generates the
marginal return r(t) at time t. Given the production function z f (·) as in the previous models,
we get r(t) = z f ′(K(t)), w(t) = z f (K(t)) − z f ′(K(t))K(t), where K(t) is the aggregate capi-
tal at time t that will be defined below. The price of the nominal debt at time t is p(t) and in-
terest rate on the nominal debt is i(t). Given the constant probability of death ρ, the time dis-
count rate θ , and logarithmic instantaneous utility, the agent maximizes:

max
{c(s,t),b(s,t)}∞v=t

∫ ∞

t
exp{−(ρ + θ )(v − t)} log c(s, v)dv.(9)

At time t, each agent earns income w(t) from labor, the effective capital return (r(t) − δ +
ρ)k(s, t) from capital, and the effective debt return (i(t) + ρ)p(t)b(t). They also pay the lump-
sum tax τ (t). Thus, the dynamic budget constraint is

c(s, t) + k̇(s, t) + p(s, t)ḃ(s, t)(10)

≤ (r(t) − δ + ρ)k(s, t) + w(t) + (i(t) + ρ)p(t)b(s, t) − τ (t),

and the transversality condition is

lim
v→∞(k(s, v) + p(s, v)b(s, v)) exp

{
−

∫ v

t
(r(μ) − δ + ρ)dμ

}
= 0.(11)

The agent maximizes (9) subject to (10) and (11). It follows that the first-order condition is

1
(ρ + θ )

c(s, t) = a(s, t) + h(s, t),(12)

where a(s, t) = k(s, t) + p(s, t)b(s, t) and h(s, t), is the discounted total labor income net of
lump-sum tax at time t; namely,

h(s, t) =
∫ ∞

t

[
(w(v) − τ (v)) exp

{
−

∫ v

t
(r(μ) − δ + ρ)dμ

}]
dv.

The condition for the household to hold positive amounts of both capital and debt is

r(v) − δ = i(v) + ṗ(v)
p(v)

.(13)

Before we define an equilibrium of this economy, for any function x(s, t), we let

X (t) =
∫ t

−∞
ρ x(s, t) exp{ρ(s − t)}ds.

Using this notation, the aggregated budget constraint can be written as

C(t) + Ȧ(t) = (r(t) − δ)A(t) + w(t) − τ (t).

Given that the aggregate supply of government debt is normalized to be unity per capita and
that τ (t) = i(t)p(t), we have the following definition of an equilibrium:
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“conventional” monetary policy in olg models 883

Definition 4. Taking as given the interest rate path i(t), an equilibrium is a solution to the
following dynamic system:

Ċ(t) = (r(t) − δ − θ )C(t) − ρ(ρ + θ )(K(t) + p(t));(14)

K̇(t) = z f (K(t)) − δK(t) − C(t);(15)

ṗ(t)
p(t)

= r(t) − δ − i(t),(16)

with boundary conditions K(0) = K0 and the transversality condition

lim
v→∞(K(v) + p(v)) exp

{
−

∫ v

t
(r(μ) − δ + ρ)dμ

}
= 0.(17)

Equation (14) is obtained as follows: First, find the aggregated law of motion for total as-
set Ȧ(t), and for the aggregate discounted posttax income Ḣ(t). Then integrate Equation (12)
over different generations to derive the aggregated first-order condition. Differentiating this
aggregated first-order condition with respect to t and eliminating Ȧ(t) and Ḣ(t), we obtain
(14). Equation (15) is the goods market clearing condition, and Equation (16) is the no-
arbitrage condition.

We first consider steady-state equilibrium with valued government debt.

Proposition 5. There exists a unique i∗ ∈ (θ, θ + ρ) such that if i ∈ (i∗, ρ + θ ], then there is a
unique steady state with p∗ > 0.

To study the effects of different paths for i(t) from a given initial condition, we assume that
the policymaker deviates from the steady-state interest rate i∗ to i(0), where i(0) = i∗ + e(0),
where the initial shock to i(0) decays exponentially at rate −η. The equilibrium path after this
unexpected shock is given by the solution to (14)–(16) and

ė(t) = −η · e(t),(18)

with initial conditions e(0) = e0, K(0) = K∗ and the transversality condition (17), where i(t) =
i∗ + e(t).

To investigate the local dynamics and stability of this nonlinear system, we apply the
Hartman–Grobman theorem (Arrowsmith and Place, 1992). The Jacobian matrix evaluated at
the steady state is

J =

⎡
⎢⎢⎣

z f ′(K∗) − δ − θ C∗z f ′′(K∗) − ρ(ρ + θ ) −ρ(ρ + θ ) 0
−1 z f ′(K∗) − δ 0 0
0 z f ′′(K∗)p∗ 0 −p∗

0 0 0 −η

⎤
⎥⎥⎦ .

Proposition 6. Suppose K(0) = K∗.

1. The characteristic equation of J has two roots with strictly negative real parts and two with
strictly positive real parts. Therefore, by the Hartman–Grobman theorem, the steady state
in Proposition 5 is saddle-path stable.

2. We have

lim
t→0+

∂K̇(t)
∂e0

< 0.
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884 hu et al.

The second result confirms the Tobin effect. For a numerical example, we display the im-
pulse response functions in the Online Appendix.

6. concluding remarks

We have pointed out what seems to be an overlooked consequence of using OLG models
to study conventional monetary policy; namely, that such policy gives rise to asset substitu-
tion between government debt and other assets. And, although we have illustrated the asset-
substitution role of conventional monetary policy in models without any frictions, it seems
very unlikely that such a role would disappear in more general OLG models. Given the po-
tential importance of that consequence, it seems that an old issue should be revisited: do we
favor the dynastic setting, which currently is the dominant model for studying monetary pol-
icy, or some sort of OLG specification? That question used to be actively debated (Abel and
Bernheim, 1991; Barro, 1974; Bernheim and Bagwell, 1988). Now, it is barely mentioned. That
seems undesirable. The choice between the two models has consequences for many of the
questions analyzed with either model and certainly for the role of conventional monetary pol-
icy.

appendix A: proofs

The Appendix contains the proofs.

Proof of Proposition 1. Proof. We use the intermediate value theorem. The main task is
to construct a tax scheme. Given r = i, we know the pretax wealth of each person. Hence,
we can make the tax on each person a share of their pretax wealth. Let

∑N
n=1 an = A and∑N

n=1 bn = B. Then, let θn = [an + bn/(1 + i)]/[A + B/(1 + i)]. It follows that θn ∈ (0, 1) and
that

∑N
n=1 θn = 1. Under this tax scheme, the budget set of person n is

cn,t
t + cn,t

t+1

1 + i
≤

(
an + bn

1 + i

)[
1 − Npi

A(1 + i) + B

]
.(A.1)

Now, for p ∈ [0, A/N], which insures that the right-hand side of (A.1) is positive, let cn,t
t (p)

be the solution for cn,t
t to Problem 1 when rt+1 = i and τ n

t+1 = θnNpi, and let Ct
t (p) =∑N

n=1 cn,t
t (p). It follows that Ct

t (p) is continuous in p. We need to show that there exists p ∈
(0, A/N) that satisfies Np + Ct

t (p) ≡ h(p) = A. By Assumption 1, we have h(0) < A. We also
have h(A/N) > A. Therefore, there exists p ∈ (0, A/N) that is a Definition 2 equilibrium. �

Proof of Proposition 2. Proof. This is another application of the intermediate value the-
orem. Starting at t = 2, this economy is the same as the Proposition 1 equilibrium. Therefore,
we let pt = p > 0 for t ≥ 2 where p is given by Proposition 1. Then, we must have

∑N
n=1 τ n

2 =
Npi2. Our task is to find p1 that satisfies the equilibrium conditions. We first construct the
lump-sum taxes payable by generation 1 when they are old. We construct such a scheme for
each p1 > 0. Let

r2(p1) = (1 + i2)(p/p1) − 1,(A.2)

the date-1 real interest rate implied by a p1. Then, we let θn(p1) = [an + bn/(1 +
r2(p1))]/[A + B/(1 + r2(p1))] and let τ n

2 (p1) = θn(p1)Npi2. Notice that θn(p1) ∈ (0, 1) and
that

∑N
n=1 θn(p1) = 1. Then the budget set of person n in generation 1 is

cn,1
1 + cn,1

2

1 + r2(p1)
≤

(
an + bn

1 + r2(p1)

)[
1 − Npi2

A(1 + r2(p1)) + B

]
.(A.3)

 14682354, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12618 by U

niversity O
f International, W

iley O
nline L

ibrary on [06/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



“conventional” monetary policy in olg models 885

Now let cn,1
2 (p1) be the choice of consumption when old and let C1

2 (p1) = ∑N
n=1 cn,1

2 (p1). We
want to show that there exists a positive p1 that satisfies C1

2 (p1) = A + B − C2
2 (p), where

C2
2 (p) ∈ (0, A) is the consumption when young of generation 2 in the Proposition 1 equilib-

rium. In other words, we have to show that there exists p1 that makes consumption when old
of generation 1 equals to what it is in the Proposition 1 equilibrium.

Suppose that i2 > i. Let p̄1 be such that r2( p̄1) = i . Then the budget set at r2(p1) = r2( p̄1)
in (A.3) differs from that in (A.1) only through an income effect: there is less wealth in (A.3)
than in (A.1). That implies, via our normal-goods assumption, that C1

2 ( p̄1) < A + B − C2
2 (p).

As p1 → 0, r2(p1) → ∞. It follows from the normal goods assumption and from (A.3) that as
r2(p1) → ∞, C1

2 (p1) → ∞, and therefore, exceeds A + B − C2
2 (p). By the intermediate value

theorem, it follows that there exists some p1 ∈ (0, p̄1) that implies C1
2 (p1) = A + B − C2

2 (p).
Notice that we also conclude in this case that there is an equilibrium in which r2(p1) > i. That
is, a one-date increase in the nominal rate is accompanied by a one-date increase in the real
rate in this equilibrium.

Now, suppose that i2 < i. Again, let p̄1 be such that r2( p̄1) = i, which implies p̄1 < p. Then
the budget set at r2(p1) = r2( p̄1) in (A.3) differs from that in (A.1) only through an income
effect: there is more wealth in (A.3) than in (A.1). That implies via our normal-goods assump-
tion that C1

2 ( p̄1) > A + B − C2
2 (p). As p1 → ∞, r2(p1) → 0. Notice that as r2(p1) → 0, the

budget set, (A.3), approaches the no-tax budget set and implies C1
2 (p1) < B, and therefore,

C1
2 (p1) < A + B − C2

2 (p). By the intermediate value theorem, it follows that there exists some
p1 > p̄1 that implies C1

2 (p1) = A + B − C2
2 (p). Notice that we also conclude in this case that

there is an equilibrium in which r2(p1) < i. That is, a one-date decrease in the nominal rate is
accompanied by a one-date decrease in the real rate in this equilibrium. �

Proof of Proposition 3.

PROOF OF PROPOSITION 3.1. Proof. Consistent with (6), we define the “stacked” first-
order difference equation by

[
kt+2

kt+1

]
=

[
wt+1 − z f ′(kt+1)(wt − kt+1)/(1 + i)

kt+1

]
.(A.4)

Let k̄ be the steady state for capital. Let the Jacobian matrix of (A.4) be A,

A =
[
−k̄z f ′′(k̄) − z f ′′(k̄)(z f (k̄)−k̄z f ′(k̄)−k̄)−z f ′(k̄)

i+1
k̄z2 f ′(k̄) f ′′(k̄)

i+1

1 0

]
.

We first verify that A − I is nonsingular (|A − I| 
= 0) to ensure that k̄ exists.

| A − I | = 1 + k̄z f ′′(k̄) + z f ′′(k̄)
(
z f (k̄) − 2k̄z f ′(k̄) − k̄

) − z f ′(k̄)

i + 1

= f ′′(k̄)
(
z f (k̄) − k̄

)
f ′(k̄)

− k̄z f ′′(k̄)

<0,

where the second equality uses i + 1 = z f ′(k̄) and the inequality follows from Assumption 2.
The characteristic equation | A − λI |= 0 is equivalent to:

λ

[
λ + k̄z f ′′(k̄) + z f ′′(k̄)

(
z f (k̄) − k̄z f ′(k̄) − k̄

) − z f ′(k̄)

i + 1

]
− k̄z2 f ′(k̄) f ′′(k̄)

i + 1
= 0.
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886 hu et al.

By using i + 1 = z f ′(k̄) and Vieta’s formulas, we have

λ1 + λ2 = −k̄z f ′′(k̄) − f ′′(k̄)
(
z f (k̄) − k̄

)
f ′(k̄)

+ k̄z f ′′(k̄) + 1

= 1 − f ′′(k̄)
(
z f (k̄) − k̄

)
f ′(k̄)

> 0,

and

λ1 · λ2 = −k̄z f ′′(k̄) > 0.

It follows that λ1 > 0 and λ2 > 0. If the eigenvalues satisfy 0 < λ1 < 1 < λ2 and tr(A) > 1 +
det(A), then we have saddle-path stability. By using the result | A − I |< 0, we get 0 < λ1 <

1 < λ2. And to prove tr(A) > 1 + det(A), we have

tr(A) − (1 + det(A)) = 1 − f ′′(k̄)
(
z f (k̄) − k̄

)
f ′(k̄)

− (1 − k̄z f ′′(k̄))

= − f ′′(k̄)
(
z f (k̄) − k̄z f ′(k̄) − k̄

)
f ′(k̄)

> 0.

The first equality uses tr(A) = λ1 + λ2 and det(A) = λ1 · λ2.
Therefore, the system is saddle path stable. �

PROOF OF PROPOSITION 3.2. Proof. For t = 2 and given k2, according to (4), i2 satisfies

z f ′(k2) = p2(1 + i2)
p1

= p2(1 + i2)
w1 − k2

= p2(1 + i2)
w̄ − k2

= (z f (k2) − k2z f ′(k2) − k3)(1 + i2)
w̄ − k2

,

where the second equality uses (3), the third one uses w1 = w̄, and the last one applies (2) and
(3). Because k3 is on the saddle path, if the initial point is (k2, k3) and it = i for all t > 2, then
the system converges to the steady state.

Therefore,

1 + i2 = z f ′(k2)(w̄ − k2)
z f (k2) − k2z f ′(k2) − k3

.(A.5)

Without loss of generality, let k2 > k̄. The derivative of i2 with respect to k2 is,

di2
dk2

= [z f ′′(k2 )(w̄−k2 )−z f ′(k2 )]·�−[z f ′(k2 )(w̄−k2 )]
(
−z f ′′(k2 )k2− ∂k3

∂k2

)
�2

= �−z f ′(k2 )·�+[z f ′(k2 )(w̄−k2 )]
∂k3
∂k2

�2

= �−z f ′(k2 )·�+[z f ′(k2 )(w̄−k2 )]λ1

�2 + o(k2 − k̄)
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“conventional” monetary policy in olg models 887

<
�−z f ′(k2 )·�+z f ′(k2 )(w̄−k2 )

�2 + o(k2 − k̄)

= �−z f ′(k2 )(�−w̄+k2 )
�2 + o(k2 − k̄)

< 0,

where � = z f (k2) − k2z f ′(k2) − k3 and � = z f ′′(k2)(w̄ − k2)(z f (k2) − k3). The first equality
uses (A.5) and the second one is a rearrangement. The third one uses ∂k3/∂k2 = λ1, which
follows from the fact that the saddle path implies k3 = k + λ1(k2 − k) + o(k2 − k̄) when k2 is
close to k. The fourth inequality uses 0 < λ1 < 1, the fifth equality is a rearrangement, and the
last inequality uses z f (k2) − k2z f ′(k2) > w̄ and k2 > k3.

Therefore, i2 is strictly decreasing in k2 in the neighborhood of k̄. �

Proof of Proposition 4. Proof. Denote the largest and the smallest element of Z as
zH and zL. Let K = [k, k] ⊂ R be the support of the state variable kt , where k is the
smallest nonzero solution to the equation k = (1 − γ )zL( f (k) − f ′(k)k) and k is the largest
nonzero solution to the equation k = (1 − γ )zH ( f (k) − f ′(k)k). Assumption 3 insures that K
is well defined.

Denote the state space as S = Z × K. Let S be the usual σ -algebra defined on S. A transi-
tion function P : S × S �→ [0, 1] is given by

∀s = (zt, kt ) ∈ S, P(s, ds) = Pr(zt+1|zt ) · I(kt ∈ h−1(zt, dk)),(A.6)

where ds = zt+1 × dk ∈ S , I is the indicator function, and the mapping h−1 : K �→ K is de-
fined by h−1(z, K) = {k ∈ K|(1 − γ )z( f (k) − f ′(k)k) ∈ K} for all measurable sets K ∈ K. We
also define the Markov operator T associated with the transition function P. Let B(S,S) be
the space of all the bounded and measurable functions in the measurable space (S,S). Then
T : B(S,S) �→ B(S,S) is

Tq(s) =
∫

q(u)P(s, du) =
∑

zt+1∈Z

Pr(zt+1|zt )q(zt+1, kt+1),(A.7)

where q ∈ B(S,S), du ∈ S , and kt+1 = (1 − γ )zt ( f (kt ) − f ′(kt )kt ).
Because S is a compact, complete, and separable metric space, to guarantee the existence of

an ergodic distribution, it is sufficient to prove that P satisfies the Feller property. It follows
immediately from (A.7) that T maps bounded continuous functions to bounded continuous
functions. This proves existence.

To obtain uniqueness, we apply Theorem 12.12 in Stokey et al. (1989). We verify that P is
increasing and that P satisfies the Mixing condition (Assumption 12.1 in Stokey et al. 1989).

From Equation (A.7), P is increasing. For mixing, let k∗ = k+k
2 . Let {kH

t }∞t=1 be the sequence
generated by the difference equation kt+1 = (1 − γ )zH ( f (kt ) − f ′(kt )kt ) with initial condition
k0 = k. Similarly, let {kL

t }∞t=1 be that generated by kt+1 = (1 − γ )zL( f (kt ) − f ′(kt )kt ) with ini-
tial condition k0 = k. Because of condition (2) in Assumption 3, {kH

t }∞t=1 and {kL
t }∞t=1 converge

to k̄ and k, respectively. Therefore, there exists N > 0 such that kH
N > k∗ and kL

N < k∗. For any
initial state z0, let

ε = min{Pr(zt = zH for t = 1, 2, . . . , N|z0), Pr(zt = zL for t = 1, 2, . . . , N|z0)}.

By construction, it follows that the N-step transition function PN : S × S �→ [0, 1] satisfies

PN
(

(z0, k), Z × [k∗, k]
)

≥ ε,(A.8)
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888 hu et al.

and

PN
(

(z0, k), Z × [k, k∗]
)

≥ ε.(A.9)

This verifies the mixing condition and completes the proof of uniqueness. �

Proof of Proposition 5. Proof. Setting Ċ(t) = K̇(t) = ṗ(t) = 0, the steady-state equilib-
rium (C∗, K∗, p∗) is characterized by the solution to the following three equations:

C∗ = ρ(ρ + θ )
i − θ

(K∗ + p∗),(A.10)

z f ′(K∗) = i + δ,(A.11)

and

p∗ = (i − θ )(z f (K∗) − δK∗)
ρ(ρ + θ )

− K∗.(A.12)

Equations (A.10) and (A.11) come from (14) and (16), respectively. And (A.12) is from
(A.10) after replacing C∗ by the steady-state expression for C from (15). We first ar-
gue that existence of a steady state implies i ∈ (θ, θ + ρ]. Because utility is in log form,
if the steady state exists, then C∗ > 0, K∗ > 0, and p∗ > 0. From (A.10), it is immedi-
ate that i > θ is necessary. Now we prove that i ≤ θ + ρ is also necessary. Suppose that
i > θ + ρ. Then, by (A.10), C∗ < (ρ + θ )(K∗ + p∗). But, by (A.12), (ρ + θ )(K∗ + p∗) = (i −
θ )(z f (K∗) − δK∗)/ρ > z f (K∗) − δK∗ = C∗, where the last equality comes from the aggregate
budget constraint at the steady state. This is a contradiction.

For a given i, (A.10)–(A.12) can be solved by one equation at a time. From (A.11), we can
solve for K∗ as a function of i, denoted as κ(i). Substituting κ(i) into (A.12), the existence of
p∗ > 0 is equivalent to

ϕ(i) ≡ (i − θ )(z f (κ(i)) − δκ(i))
ρ(ρ + θ )

− κ(i) > 0.

Taking the derivative of ϕ(i) with respect to i, we obtain

ϕ′(i) = κ(i)
[

1
ρ(ρ + θ )

(
z f (κ(i))

κ(i)
− δ

)
+ κ ′(i)

κ(i)
(i + ρ)(i − ρ − θ )

ρ(ρ + θ )

]
.

Because f is strictly concave, z f (κ(i))/κ(i) − δ > z f ′(κ(i)) − δ = i > 0, which, by the im-
plicit function theorem, implies that κ ′(i) = 1/(z f ′′(κ(i))) < 0. That and i ≤ ρ + θ imply that
ϕ′(i) > 0.

Moreover, we have ϕ(θ ) = −κ(θ ) < 0 and

ϕ(θ + ρ) = z f (κ(ρ+θ ))−δκ(ρ+θ ))
ρ+θ

− κ(ρ + θ )

= κ(ρ + θ )
{[

z f (κ(ρ+θ ))
κ(ρ+θ ) − δ

]
1

ρ+θ
− 1

}
>κ(ρ + θ )

(
z f ′(κ(ρ+θ ))−δ

ρ+θ
− 1

)
= κ(ρ + θ )

(
ρ+θ+δ−δ

ρ+θ
− 1

)
= 0,

which gives us ϕ(θ + ρ) > 0. As a consequence, from the intermediate value theorem, there
exists a unique i∗ ∈ (θ, θ + ρ) such that ϕ(i∗) = 0 and ϕ(i) > 0 for all i ∈ (i∗, ρ + θ ]. This
proves the existence and uniqueness of p∗ under the given i. Finally, the equilibrium consump-
tion C∗ is given by (A.10). �
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“conventional” monetary policy in olg models 889

Proof of Proposition 6.

PROOF OF PROPOSITION 6.1. Proof. It is obvious that one of the eigenvalues of J is −η <

0. We focus on the remaining three. The characteristic polynomial of J3×3 (the matrix gener-
ated by deleting the fourth row and column of J) is

λ[λ − (z f ′(K∗) − δ − θ )][λ − (z f ′(K∗) − δ)]

− ρ(ρ + θ )p∗z f ′′(K∗) + λ[C∗z f ′′(K∗) − ρ(ρ + θ )] = 0,
(A.13)

or

λ3 − (2z f ′(K∗) − 2δ − θ )λ2+
[2z f ′(K∗) − 2δ − θ + C∗z f ′′(K∗) − ρ(ρ + θ )]λ − ρ(ρ + θ )p∗z f ′′ = 0.

(A.14)

Let these three eigenvalues be λi for i = 1, 2, 3. From the property of cubic equations, it fol-
lows that

λ1λ2λ3 = ρ(ρ + θ )p∗z f ′′(K∗) < 0,(A.15)

and

3∑
i=1

λi = −θ + 2(z f ′(K∗) − δ)) > 0.(A.16)

For a cubic equation, either all three eigenvalues are real, or there are two complex eigen-
values that are conjugate with each other and one real eigenvalue. If all eigenvalues are real,
then (A.15) implies that either there is one negative eigenvalue or all three eigenvalues are
negative, which is ruled out by (A.16). If there are two conjugate complex eigenvalues, then
the real eigenvalue must be negative and both of the complex eigenvalues have positive real
parts. In either case—either all real roots or one real root—we conclude that J has two roots
with strictly negative real parts and two roots with strictly positive real parts. �

PROOF OF PROPOSITION 6.2. Proof. One negative eigenvalue of J is −η and let the other
be denoted as −γ . Let us first focus on the case that γ 
= η. The general solution to the lin-
earized dynamic system is

⎡
⎢⎢⎢⎣

C(t) − C∗

K(t) − K∗

p(t) − p∗

e(t)

⎤
⎥⎥⎥⎦ = c1e−γ tV1 + c2e−ηtV2,

where V1 ≡ [V1,1,V1,2,V1,3,V1,4]′ and V2 ≡ [V2,1,V2,2,V2,3,V2,4]′ are eigenvectors correspond-
ing to −γ and −η, respectively; c1 and c2 are two constant terms that are derived from the ini-
tial values, e(0) = e0 and K(0) = K∗.

First of all, since V2 is the eigenvector corresponding to −η, we obtain

JηV2 = 0,
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890 hu et al.

where

Jη =

⎡
⎢⎢⎢⎣

z f ′(K∗) − δ − θ + η C∗z f ′′(K∗) − ρ(ρ + θ ) −ρ(ρ + θ ) 0

−1 z f ′(K∗) − δ + η 0 0

0 z f ′′(K∗)p∗ η −p∗

0 0 0 0

⎤
⎥⎥⎥⎦.

If V2,4 = 0, we can easily show V2 = 0, which contradicts that V2 is an eigenvector. Normaliz-
ing V2,4 to be 1, we can solve the value of V2,2,

F (η) · V2,2 = ρ(ρ + θ )
p∗

η
> 0,(A.17)

where F (·) is a function R → R defined as

F (x) = (z f ′(K∗) − δ − θ + x)(z f ′(K∗) − δ + x) + [C∗z f ′′(K∗) − ρ(ρ + θ )]

+ρ(ρ + θ )
( 1

x z f ′′(K∗)p∗).
Notice that we have F (γ ) = 0 from Equation (A.13). In addition,

F ′(x) = (z f ′(K∗) − δ − θ + x) + (z f ′(K∗) − δ + x)

−ρ(ρ + θ )
( 1

x2 z f ′′(K∗)p∗) > 0 for all x > 0.

Hence, if η > γ , we have

F (η) > F (γ ) = 0.

Combining with (A.17), we have V2,2 > 0. On the other hand, if η < γ , F (η) < F (γ ) = 0, we
get V2,2 < 0 from (A.17). Therefore, we have

(γ − η) · V2,2 < 0.(A.18)

Since V1 is the eigenvector corresponding to −γ , we get

JγV1 = 0,(A.19)

where

Jγ =

⎡
⎢⎢⎢⎣

z f ′(K∗) − δ − θ + γ C∗z f ′′(K∗) − ρ(ρ + θ ) −ρ(ρ + θ ) 0

−1 z f ′(K∗) − δ + γ 0 0

0 z f ′′(K∗)p∗ γ −p∗

0 0 0 γ − η

⎤
⎥⎥⎥⎦.

We immediately have V1,4 = 0 since γ 
= η. Similarly, we can easily prove that V1,2 
= 0; other-
wise, V1 = 0. Therefore, we can normalize V1,2 to be 1.

Now let us calculate the vales of c1 and c2. Given V1,4 = 0, we have e(0) = e0 = c2e−η×0 ×
V2,4. Given V2,4 = 1, we have c2 = e0. Given V1,2 = 1, we have K(0) − K∗ = c1e−γ×0 +
e0e−η×0V2,2. This implies c1 = −e0V2,2 if K(0) = K∗. Therefore,

K̇(t) = (
γ e−γ t − ηe−ηt)e0 · V2,2.

Driving t to 0+ and using Equation (A.18), we obtain

lim
t→0+

∂K̇(t)
∂e0

= (γ − η) · V2,2 < 0.
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Now let us consider the case that γ = η. The general solution to the linearized dynamic sys-
tem is ⎡

⎢⎢⎢⎣
C(t) − C∗

K(t) − K∗

p(t) − p∗

e(t)

⎤
⎥⎥⎥⎦ = (c1 + c2 · t)e−γ tV1 + c2 · e−γ tṼ2,

where V1 ≡ [V1,1,V1,2,V1,3,V1,4]′ is the eigenvector corresponding to −η; and Ṽ2 ≡
[Ṽ2,1, Ṽ2,2, Ṽ2,3, Ṽ2,4]′ is obtained by solving the nonhomogeneous problem JṼ2 + ηṼ2 = V1

for Ṽ2. c1 and c2 are two constant terms that are derived from the initial values, e(0) = e0 and
K(0) = K∗.

From the initial condition, we obtain

e(0) = e0 = c1 · V1,4 + c2 · Ṽ2,4,

and

K(0) − K∗ = 0 = c1V1,2 + c2 · Ṽ2,2.

As in the case that γ 
= η, we can normalize V1,2 = 1. By solving Equation (A.19) and using
Equation (A.13), we get the eigenvector

V1 =

⎡
⎢⎢⎢⎣

z f ′(K∗) − δ + η

1

− 1
η
z f ′′(K∗)p∗

0

⎤
⎥⎥⎥⎦.(A.20)

Given V1,4 = 0, it then follows that c2 = e0/Ṽ2,4 and c1 = −e0 · Ṽ2,2/Ṽ2,4. Substituting back,
we get

K(t) − K∗ =
(
−e0 · Ṽ2,2

Ṽ2,4
+ e0

Ṽ2,4
· t

)
e−γ t + e0

Ṽ2,4
· Ṽ2,2 · e−γ t = e0

Ṽ2,4
· t · e−γ t .

Taking derivation with respect to t and letting t → 0+, we have

lim
t→0+

K̇(t) = e0

Ṽ2,4
.

To get the sign of Ṽ2,4, we simplify the system of JṼ2 + ηṼ2 = V1 by removing Ṽ2,1, Ṽ2,2 , and
Ṽ2,3:

− ρ(ρ + θ )
1
η

p∗Ṽ2,4 =

V1,1 + (z f ′(K∗) − δ − θ + η)V1,2 + ρ(ρ + θ )
1
η

V1,3.

(A.21)

Plugging the value of each element of V1 (see (A.20)) into (A.21), we obtain

Ṽ2,4 = (z f ′(K∗)−δ+η)+(z f ′(K∗)−δ−θ+η)−ρ(ρ+θ ) 1
η ( 1

η
z f ′′(K∗)p∗)

[−ρ(ρ+θ )] 1
η

p∗

< 0.

This completes the proof that limt→0+ ∂K̇(t)
∂e0

< 0. �
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information sec-
tion at the end of the article.

Data S1
Online Appendix Figure 1: Impulse Response Functions of kt and pt

Table 1: Parameters
Online Appendix Figure 2: Impulse Response Functions
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